
36

ReCDroid+: Automated End-to-End Crash Reproduction

from Bug Reports for Android Apps

YU ZHAO, University of Central Missouri, USA

TING SU, East China Normal University, China

YANG LIU, Nanyang Technological University, Singapore

WEI ZHENG, Northwestern Polytechnical University, China

XIAOXUE WU, Yangzhou University, China

RAMAKANTH KAVULURU, University of Kentucky, USA

WILLIAM G. J. HALFOND, University of Southern California, USA

TINGTING YU, University of Cincinnati, USA

The large demand of mobile devices creates significant concerns about the quality of mobile applications

(apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes).

However, the process of crash reproduction is often manually done by developers, making the resolution

of bugs inefficient, especially given that bug reports are often written in natural language. To improve the

productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called

ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses

a combination of natural language processing (NLP), deep learning, and dynamic GUI exploration to

synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+

on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced

42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports.

A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of

developers when resolving crash bug reports.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: Bug report, bug reproducing, Android GUI testing

Yu Zhao and Tingting Yu part of this work was completed at University of Kentucky.

This research is supported in part by the NSF grant CCF-1652149 and NTU research grant NGF-2017-03-033.

Authors’ addresses: Y. Zhao, University of Central Missouri, 116 W South St, Warrensburg, MO, USA, 64093; email:

yzhao@ucmo.edu; T. Su, East China Normal University, 3663 North Zhongshan Rd, Shanghai, China, 200062; email:

tsuletgo@gmail.com; Y. Liu, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798; email: yan-

gliu@ntu.edu.sg; W. Zheng, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi’an, Shannxi,

China, 710072; email: wzheng@nwpu.edu.cn; X. Wu, Yangzhou University, 196 Huayangxi Road, Yangzhou, Jiangsu, China,

225127; email: xiaoxuewu@yzu.edu.cn; R. Kavuluru, University of Kentucky, 725 Rose St, Lexington, KY, USA, 40506; email:

ramakanth.kavuluru@uky.edu; W. G. J. Halfond, University of Southern California, 941 Bloom Walk, Los Angeles, CA, USA,

90089; email: halfond@usc.edu; T. Yu (corresponding author), University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH,

USA, 45221; email: tingting.yu@uc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/03-ART36 $15.00

https://doi.org/10.1145/3488244

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3488244

36:2 Y. Zhao et al.

ACM Reference format:

Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru, William G. J. Halfond, and Tingt-

ing Yu. 2022. ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports for Android Apps.

ACM Trans. Softw. Eng. Methodol. 31, 3, Article 36 (March 2022), 33 pages.

https://doi.org/10.1145/3488244

1 INTRODUCTION

Mobile applications (apps) have become extremely popular – in 2020 there were over 2.9 million
apps in Google Play’s app store [13]. As developers add more features and capabilities to their
apps to make them more competitive, the corresponding increase in app complexity has made
testing and maintenance activities more challenging. The competitive app marketplace [53] has
also made these activities more important for an app’s success. A recent study found that 88% of
app users would abandon an app if they were to repeatedly encounter a functionality issue [11].
This motivates developers to rapidly identify and resolve issues, or risk losing users.

To track and expedite the process of resolving app issues, many modern software projects use
bug-tracking systems (e.g., Bugzilla [24], Google Code Issue Tracker [4], and Github Issue Tracker
[12]). These systems allow testers and users to report issues they have identified in an app. Re-
ports involving app crashes are of particular concern to developers because it directly impacts an
app’s usability [57]. Once developers receive a crash/bug report, one of the first steps to debug-
ging the issue is to reproduce the issue in the app. However, this step is challenging because the
provided information is written in natural language. Natural language is inherently imprecise and
incomplete [18]. Even assuming the developers can perfectly understand the bug report, the ac-
tual reproduction can be challenging since apps can have complex event-driven and GUI related
behaviors, and there could be many GUI-based actions required to reproduce the crash.

The goal of our approach is to help developers reproduce issues reported for mobile apps. We
propose a new technique, ReCDroid+, targeted at Android apps, that can automatically analyze
bug reports and generate test scripts that will reproduce app crashes. Specifically, given a raw bug
report, ReCDroid+ leverages HTML parser [2], convolutional neural networks (CNN) [46],
and long-short term memory (LSTM) [35] to extract crash and S2R (steps to reproduce) sen-
tences. Several natural language processing (NLP) techniques are then utilized to analyze the
S2R sentences of the reports and automatically identify GUI components and related information
(e.g., input values) that are necessary to reproduce the crashes. Next, ReCDroid+ employs a novel
dynamic exploration guided by the information extracted from bug reports to fully reproduce the
crashes. ReCDroid+ takes as input a bug report and an APK and outputs a script containing a se-
quence of GUI events leading to the crash, which can be replayed directly on an execution engine
(e.g., UI Automator [6]).

ReCDroid+differs from prior work for analyzing the reproducibility of bug reports [26, 56]
because most existing techniques focus on improving the quality of bug reports. One important
related work, Yakusu [32], is translating a bug report into a test case that has the highest number
of matching steps with the bug report. None of them have considered using information from
bug reports to automatically guide bug reproduction. For example, FUSION [56] enables the
auto-completion of Android bug reports in order to provide more actionable information to
developers. In contrast, ReCDroid+ takes crash description of the report as input, regardless of
its quality, and extracts the information necessary to reproduce crashes. ReCDroid+ also differs
from techniques on synthesizing information from bug reports [26, 32, 36, 61] because they focus
on extracting useful information (e.g., test cases [32]) without directly targeting at reproducing
crashes. In addition, ReCDroid+ provides an accurate solution to automatically extract sentences
describing steps-to-reproduce (S2R) by using CNN to model sentence features and LSTM to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

https://doi.org/10.1145/3488244

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:3

model sentence dependence. A set of rules are developed to overcome the false positives and false
negatives of the extraction.

ReCDroid+ has been implemented as a software tool on top of two execution engines—
Robotium [79] and UI Automator [6]. To determine the effectiveness of our approach, we ran
ReCDroid+ on 66 bug reports from 37 popular Android apps. ReCDroid+ was able to successfully
reproduce 42 (63.6%) of the crashes that can be reproduced by a professional human tester. Fur-
thermore, 12 out of the 24 remaining crashes could have been reproduced by ReCDroid+ if limita-
tions in the implementation of the execution engines (e.g., fail to click certain buttons) were to be
removed.

To determine the usefulness of our tool, we conducted a light-weighted user study that showed
that ReCDroid+ can reproduce 21 crashes not reproduced by at least one developer and was highly
preferred by developers in comparison to a manual process. To assess the effectiveness of ReC-
Droid+ in handling bug reports written by different users, we asked another four participants to
re-write the bug description for the 42 reproduced crashes. ReCDroid+ can detect 93% of the 168
(4× 42) bug reports. To evaluate the robustness of ReCDroid+ in handling low-quality bug reports,
we randomly removed 10%, 20%, and 50% content from the 42 original reproduced bug reports.
Among all 630 mutated bug reports, ReCDroid+ can reproduce 88% of them. Overall, we consider
these results to be very strong and they indicate that ReCDroid+ could be a useful approach for
helping developers to automatically reproduce bug crashes.

ReCDroid+ provides several benefits for developers. First, because ReCDroid+ is fully automated,
developers can simply push a button and work on other tasks instead of waiting for the results or
manually reproducing bugs. Second, ReCDroid+ can be used with continuous integration server
to enable automated/fast feedback, such that whenever a new issue is submitted, ReCDroid+ will
automatically provide a reproducing sequence for developers. Third, users can use ReCDroid+ to
assess the quality of a bug report before submitting it.

In summary, our paper makes the following contributions:

• The development of a tool that can automatically reproduce crash failures for Android apps
directly from the textual description of bug reports.
• A novel text analysis technique that uses natural language processing (NLP) and deep learn-

ing to derive a set of heuristics and grammar rules that can automatically capture events and
input values relevant to the bug reports.
• A novel algorithm that leverages the information extracted from bug reports to guide an

exploration of the app’s GUI to search for sequences of events leading to the reported crash.
• An empirical study showing that ReCDroid+ is effective at reproducing Android crashes and

likely to improve the productivity of bug resolution.
• The implementation of our approach as a publicly available tool, ReCDroid+, along with all

experiment data (e.g., apk and bug report datasets, user study) [8].

Further, we made a large number of changes related to the presentation of the article and in-
cluded more detailed descriptions of the algorithm, evaluation and related work.1

In the next section we present the motivation and challenges of our approach. We then describe
ReCDroid+ in Section 3. Our evaluation follows in Sections 4–5, followed by discussion in Section 6.
We present related work in Section 7, and end with conclusions in Section 8.

2 OVERVIEW

In this section we describe our observations from studying hundreds of bug reports. We then
discuss the design challenges of ReCDroid+.

1Our cover letter provides more details on the extension and revision over the original paper.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:4 Y. Zhao et al.

Fig. 1. Bug Report for LibreNews issue#22.

2.1 Observations

As the first step, we spent a month studying a large number of Android bug reports to understand
their characteristics for guiding the design and implementation of ReCDroid+.

We collected Android apps from both Google Code Archive [5] and GitHub [12]. We crawled the
bug reports from the first 50 pages in Google Code, resulting in 7,666 bug reports. We then searched
Android apps from GitHub by using the keyworld “Android”, resulting in 3,233 bug reports. Among
all 10,899 bug reports, we used four case-insensitive keywords: “crash”, “exception”, “failure”, and
“error” involving app crashes. This yielded a total number of 1,038 bug reports. The result indicates
that a non-negligible number (9.5%) of bug reports involve app crashes.

ReCDroid+ focuses on reproducing app crashes from bug reports containing textual description of

reproducing steps, so we analyze the 1,038 crash bug reports and summarize the following findings:
(1) 813 bug reports (78.3%) contain reproducing steps—the maximum is 11 steps, the minimum is
1 step, and the average is 2.3 steps; (2) only 3 out of 813 crashes are related to rotate action—they
all occur 1–2 steps right after the rotate; (3) 398 of the 813 crash bug reports (49%) require specific
user inputs on the editable GUI components to manifest the crashes—29 (3.5%) of them involve
special symbols (e.g., apostrophe, hyphen); (4) 127 crashes (15.6%) involve generic click actions,
including OK (79), Done (9), and Cancel (2).

2.2 Design Challenges

An example bug report is shown in Figure 1. In this example, the reporter describes the steps to
reproduce the crash in five sentences. The goal of ReCDroid+ is to translate this sort of descrip-
tion to the event sequence shown in Figure 7 for triggering the crash. To achieve this goal, our
approach contains two general steps: (1) Extracting the needed information from bug reports, and
(2) Using this information to guide the reproduction of the crash. In the remainder of this section,
we describe the design challenges of our approach and how we address these challenges. Details
and algorithms of our approach are presented in Section 3.

2.2.1 Extracting Information from Bug Reports. As the first step, we need to identify the types
of information that are broadly useful for guiding crash reproduction. From the examination of
the 813 bug reports containing reproducing steps, our insight was that events that trigger new
activities, interact with GUI controls, or provide values are the key parts of the steps provided by
bug reporters. More broadly, these actions involve performing “a type of user action” on “a partic-
ular GUI component” with “specific values” (if the component is editable). Therefore, action, target

GUI component, and input values are the main elements to be extracted from bug reports. These

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

https://github.com/milesmcc/LibreNews-Android/issues/22

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:5

elements are often contained in the steps-to-reproduce (S2R) sentences. To illustrate, consider the
fourth step in Figure 1. Here, “change” is the user action, “Server” is the target GUI component,
and “xxyyzz” is the input value.

There are two challenges in identifying the needed information for crash reproducing. First, we
need to determine whether a given bug report involves a crashed output because our goal is to
reproduce crashes. Second, we need to identify S2R sentences and extract the semantic represen-
tation of the S2R from the bug reports, defined by a tuple {action, GUI component, input}.

Challenge 1: Identifying crash report and extracting S2R and crash sentences. A bug re-
port often contains mixed types of information, such as comments, code, status of the issue, and
information unrelated to the bug. To automate the process of identifying crash bug reports and
extracting S2R, we designed a novel deep learning model that can automatically identify S2R and
crash sentences. A crash sentence contains information involving the symptom of the crash failure.
The same model is used to handle both S2R and crash sentences.

We invited three students to label 4,000 bug reports randomly selected from 11,399 bug reports
crawled from bug tracking systems. On each bug report, the students labeled whether a sentence
is a crash sentence or S2R. Unlike traditional text classification methods [15, 54, 82], ReCDroid+’s
deep learning model targets the bug report sentences and takes into account their relations. For
example, a sentence right after the text “steps to reproduce:” may have a high possibility of being
an S2R. A sentence sitting between two S2Rs has a high possibility to be an S2R.

It is challenging to create a robust deep learning model because of reasons such as incorrect
labeling, unbalanced dataset, and unpredictable issues during the training process. To improve the
accuracy of our model, we designed 12 rules to model the context of the bug report. Therefore, the
extracted S2R from deep neural models is refined by these rules in order to increase the success
rate of bug reproduction. For example, a rule may suggest that S2R should be extracted from the
user comment with the largest number of S2R sentences among all user comments. The rationale
behind this is that S2R sentences often appear together in one user comment of a bug report.

Challenge 2: Mapping bug report into semantic representations of events. The second de-
sign challenge is the extraction of the semantic representation of the reproducing steps from the
bug reports, defined by a tuple {action, GUI component, input}. A seemingly straightforward solu-
tion to this challenge is to use a simple keyword search to match each sentence in the bug report
against the name (i.e., the displayed text) of the GUI components from the app. However, keyword
search cannot reliably detect input values or the multitude of syntactical relationships that may
exist among user actions, GUI components, and inputs. For example, consider a sentence “I click
the help button to show the word.” If both help and show happen to be the names of app buttons, a
keyword search could identify both help and show to be the target GUI components, whereas only
help has a relationship with the action click. Moreover, reporters may use new words that do not
match the name of the GUI component of the app. For example, a reporter may use “play the film”
to describe the “movie” button.

Our insight is that the extraction process can be formulated as a slot filling problem [45, 55]
in natural language processing (NLP). With this formulation each element of the event tuple is
represented as a semantic slot and the goal of the approach then becomes to fill the slots with
concrete values from the bug report. Our approach uses a mixture of NLP techniques and heuristics
to carry out the slot filling. Specifically, we use the SpaCy dependency parser [38] to identify
typical grammatical structures that were used in bug reports to describe the relevant user action,
target GUI component, and input values. These were codified into 15 typical patterns, which we
summarize and describe in Section 3. The patterns are used to detect event tuples of a new bug
report and fill their slots with values.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:6 Y. Zhao et al.

To help bridge the lexical gap between the terminology in the bug report and the actual GUI
components, our approach uses word embeddings computed from a Word2vec model [47] to de-
termine whether two words are semantically related. For example, the words “movie” and “film”
have a fairly high similarity.

2.2.2 Reproducing Crashes Guided by Bug Reports. In the second step, we will leverage the
event representations extracted from bug reports to guide the reproduction of crashes. To make
our approach practical, there are two major challenges in this step. First, we need to generate
complete and correct sequences. Second, we want the reproducing process to be fast.

Challenge 3: Creating complete and correct sequences for bug reproduction. A key chal-
lenge for our approach is that even good bug reports may be incomplete or inaccurate. For example,
steps that are considered obvious may be omitted or forgotten by the reporter. Therefore, our ap-
proach must be able to fill in these missing steps. Ideally, information already extracted from the
report can be used to provide “hints” to identify and fill in the missing actions.

Existing GUI crawling tools [17, 20, 37, 52, 76] are not a good fit for this particular need. For
example, many existing tools (e.g., A3E [20]) use a depth-first search (DFS) to systematically
explore the GUI components of an app. That is, the procedure executes the full sequence of events
until there are no more to click before searching for the next sequence. In our experience, this is
sub optimal because if an interaction with an incorrect GUI component is chosen (due to a missing
step), then the subsequent exploration of sub-paths following that step will be wasted.

For our problem domain, a guided DFS with backtracking is more appropriate. Using this strat-
egy, our approach can check at each search level whether GUI components that are more relevant
(i.e., match the bug report) to the target step are appearing and use this information to identify the
next component to explore. If none of the components are relevant to the bug report, instead of
deepening the exploration, ReCDroid+ can backtrack to a relevant component in a previous search
level. This process continues until all relevant components in previous levels are explored before
navigating to the subsequent levels.

Challenge 4: Making the reproduction efficient. Efficiency in the reproduction process is im-
portant for developer acceptance. An approach that takes too long may not seem worth the wait
to developers, and an approach that generates a needlessly long sequence of actions may be over-
whelming to developers. These two goals represent a tradeoff for our approach: identifying the
minimal set of actions necessary to reproduce a crash can require more analysis time.

To achieve a reasonable balance between these two efficiency goals, we designed a set of opti-
mization strategies and heuristics for our approach. For the guided crawl, we utilized strategies
that included checking the equivalence of screens and detecting loops to avoid redundant back-
tracking, and prioritizing GUI components to be explored based on their likelihood of causing
bugs. For minimizing the size of the sequence of GUI actions, whenever a backtrack was needed,
our approach restarted the search from the home screen of the app and reset the state of the app.
This avoids a common source of inefficiency present in other approaches (e.g., [17, 20, 76]) that add
backtracking steps to their crawling sequence, which results in an overall much longer sequence
of reproducing actions.

3 RECDROID+ APPROACH

The architecture of ReCDroid+ is shown in Figure 2. ReCDroid+ consists of three major phases—
preprocessing, bug report analysis, and dynamic exploration. The preprocessing phase employs
HTML parsing to extract the title and comments from the downloaded HTML bug reports. In the
meantime, sentences are segmented by NLP. Then deep learning techniques are utilized to identify
crash sentences and S2R sentences. The crash sentences are used to verify whether the bug report

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:7

Fig. 2. Overview of the ReCDroid+ Framework.

is in the usage scope (i.e., handling only crash bug reports). The S2R refining rules reduce the false
positives and false negatives of the extracted S2R.

To complete the sequence of extracted steps, the second phase employs a novel dynamic explo-
ration of an app’s GUI. This exploration is performed based on a dynamic ordered event tree

(DOET) representation of the GUI’s events, and searches for sequences of events that fill in miss-
ing steps and lead to the reported crash. ReCDroid+ saves the event sequences into a script that
can be automatically replayed on the execution engine.

3.1 Preprocessing Bug Reports

In the preprocessing phase, ReCDroid+ first leverages HTML parsing to extract the actual content
of bug report from files in HTML format. It then uses NLP techniques, combined with CNN and
LSTM to models identify crash bug reports and extract S2R sentences. A set of modeling rules are
derived to improve the accuracy of learning.

3.1.1 HTML Parsing. Inorder to perform analysis on bug reports, we will need to download
the bug report files from bug tracking systems. These are often created in HTML format, which
contain mixed types of information, such as CSS/HTML tags, navigation tags, status tags, and ads.
Such noisy information can be overwhelming but is irrelevant to the actual content of bug reports.
For example, as shown in Figure 3, in a bug report with only 10 lines of bug description [1],
the associated noisy information contains more than a thousand lines. As the very first step,
ReCDroid+ needs to eliminate the noises and extracts only texts that are relevant to the bug (a.k.a.
relevant content).

ReCDroid+ employs a parsing technique to extract the relevant content of bug reports directly
downloaded from the bug tracking systems. Specifically, the title and the comments are considered
to be relevant and need to be extracted. The insight is that some of the titles provide information
related to bug descriptions and symptoms, which may be used to identify S2R and crash reports.
The first comment is often written by the report providing a detailed bug description and the
followup comments are often discussions related to the bug.

For bug reports from the same bug tracking system, there is a unique HTML tag standard to
label the title and comments position. For example, in Github, the title element is labeled by a
particular HTML tag “//span[@class=“js-issue-tittle”]” and comment element is labeled by HTML

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:8 Y. Zhao et al.

Fig. 3. HTML parsing.

tag “//td”. ReCDroid+ utilizes an HTML parsing tool called lxml [2] to identify the HTML tag and
extract the texts under the title and comment elements. On a different bug tracking system, the
names of HTML tags may be different. For example, in Google code, the HTML tag for the title
element is “div[@id=“gca-project-header”]”. ReCDroid+ saves different tag names in a dictionary
for each bug tracking system and selects the right one to use when needed. ReCDroid+ currently
supports GitHub, Google Code, Bitbucket, and GitLab. It can be extended to support other bug
tracking systems by creating a dictionary with system-specific tags.

ReCDroid+ employs a special mechanism to translate all numbers and in the HTML bug
report into a special string “numDot” to process texts that are related to S2R. The intuition is that
sentences beginning with list symbols (e.g., bullets, numbers), transformed from the tag in
HTML, are more likely to be S2R. Among the 4,000 bug reports, 2014/4322=46.6% of tags are
manually labeled as S2R.

3.1.2 Extract S2R and Crash Sentences. As the first step, ReCDroid+ needs to split the relevant
text extracted from the HTML file into sentences. To do this, ReCDroid+ uses SpaCy [38] to detect
the segmentation of sentences based on punctuation (e.g., “.” , “!”, “?”). Given a bug report with a se-
quence of sentences, ReCDroid+ builds a deep learning model to identify S2R and crash sentences.
This is a typical binary classification problem. While there has been much work on addressing dif-
ferent kinds of text classification problem [43, 85], texts involving S2R and crash have their unique
characteristics that should be considered.

Specifically, S2R and crash sentences tend to have adjacent context. In the example of Figure 1,
a sentence right before or right after a S2R sentence is more likely to be an S2R sentence than
the others. In addition, sentences that follow the text indicating steps to reproduce (e.g., a word
“steps”) has a higher chance to be S2R. Also, sentences that begin with listing symbols (e.g., bullet
points, numbers) tend to be S2R. The crash sentences may also depend on the adjacent context,
especially in the Java error message written in multiple adjacent sentences.

Given the unique characteristics, we need to build a model that is more suitable to handle the text
classification program for detecting S2R and crash sentences in a bug report. To do this, ReCDroid+
first transfers a word to a word feature vector by using word embedding method, as shown in
Figure 4. Next, based on the extracted word feature vector, a CNN and max layer are used to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:9

Fig. 4. The convolutional neural network extracts sentence features from each word. The word embedding

per-trained through Word2vec.

Fig. 5. The LSTM classifies the sentence with the dependence information from neighbor sentences.

generate a sentence feature vector, which can be used to predict at the sentence level. Finally, we
use an LSTM to model the inter-sentence sequential dependencies and their role in the eventual
label prediction for the target sentence, as shown in Figure 5. We next describe the three steps
used to detect S2R and crash sentences.

Word embedding. ReCDroid+ uses Word2vec [7] to build pre-trained word vectors that are used
as the input of the deep learning model. Word2vec builds word vector space using a large corpus
of text as input. Every word in the corpus will be represented as real vector (Rd) in the word vector
space. In the pre-training process, 10,899 Android bug reports are crawled from GitHub and Google
Code and the sentences extracted by the HTML parser are fed into Word2vec. To encourage robust
learning, we set the number of epochs 2 to 2000, which is empirically determined in our evaluation.

2The number of epochs is a hyper-parameter that defines the number of times the learning algorithm will iterate through

the entire training dataset [63].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:10 Y. Zhao et al.

Sentence feature vector extraction. A CNN and a maxpool layer (i.e., an output layer in a neural
network [14]) are used to extract the sentence feature vector from the pre-trained word vectors.
Figure 4 shows the overview of the model used to extract sentence feature vector. The input to the
CNN model is a list of word vectors computed by Word2vec from each sentence and the output is a
2-D matrix, which represents the convolutional layer with multiple filters of CNN. A max layer is
used to reduce the spatial dimension of input volume from 2-D matrix to 1-D matrix representing a
sentence feature vector, which is later used as the input to LSTM. This sentence feature extraction
model is inspired by the classical CNN sentence classification method [46]. However, in addition to
the orignal approach, we leverage LSTM to model the dependency among sentences of bug reports.

We take the sentence “5. Click refresh” in Figure 4 as an example. After pre-processing, the sen-
tence is transformed into a list of tokens: {“numDot”, “Click”, “refresh”, “.”}. There are three words
and one punctuation in it. By applying Word2vec word embedding, each token is represented as
a vector. The four vectors from four tokens can be combined into a 2-D matrix with 4 rows. Next,
the CNN model processed this 2-D matrix and output an 2-D matrix as the convolution result to
the max layer. Finally, the max layer reduce it to a 1-D matrix as the sentence feature vector of the
original sentence “5. Click refresh”.

Sentence dependence modeling. ReCDroid+ uses an LSTM to model sentence dependence, as
shown in Figure 5. The insight is that the non-target sentences with shorter distance to the target
sentence are more likely to be an S2R or crash sentence. In each step, the LSTM learns what to omit
and what to retain from the previous inputs of the input sequence. Information from sentences that
are farther away from the target sentence is less likely to be retained when compared to those that
are closer to it. [70]. ReCDroid+’s LSTM model orders the non-target sentences by their distances
to the target sentence. By default, ReCDroid+ selects four neighbor sentences as input to the LSTM
model.

In the Figure 5, the target sentence and its four neighbor sentences are represented as {senb2
,

senb1
, sentarдet , sena1 , sena2 }, where sentarдet is the target sentence, senb2

and senb1
are the second

and first sentences right before sentarдet , and sena1 , sena2 are the first and second sentences right
after sentarдet . When there are no sentences before or after the target sentence, i,e., the dependence
sentences are missing, we use an all zero padding vector to represent the missing dependence
sentence feature.

Following the idea of Named Entity Recognition (NER) [28], the well-known dropout
method is used to prevent overfitting of the LSTM model [64]. The linear layer followed by the
softmax layer decodes the label of each target sentence. The last cell used as input to the LSTM
model is the target sentence’s feature. This cell outputs the feature involving sentence dependence
information to the dropout, linear, and softmax layer. The final output is the decoded label. If the
output >= 0.5, the target sentence is an S2R (label = 1), otherwise, it is not (label = 0). This decoded
label rule is utilized for both crash sentences and S2R extraction.

3.1.3 Policy based S2R Sentences Selection. The extracted S2R sentences by the deep learning
model may not be ready to use immediately because of the potential high false positive and false
negative rates. A false positive occurs when ReCDroid+ mistakenly labels a non-S2R sentence as
an S2R sentence, which may bring noises to the exploration. A false negative indicates an S2R
sentence is identified as not-S2R, which may cause ReCDroid+ to fail to reproduce the crash due
to a missing reproducing step. The deep learning model may also output duplicated S2R sentences.
For example, the same reproducing step may be mentioned multiple times in the report. Such
duplicate S2R sentences may misguide bug reproduction.

To address the above challenges, we designed a set of S2R refining rules to refine the S2R labels
of the bug report sentences. The input to the refining rules are the whole bug report, as well

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:11

as the S2R sentences output by the the deep model. The refining rules may extract additional
sentences from the bug report as S2R to handle the model’s false negatives, or eliminate certain
S2R sentences identified as positive by the model to address its false positives. The final output of
S2R after applying the refining rules is denoted as S2Rr .

Table 2 lists the eleven rules, their description, and the rationale behind each rule. These rules
are derived from the 4,000 human labeled bug reports from GitHub and Google Code (Section 4.1).
Among the 4,000 bug reports, 1,997 (50%) bug reports involve S2R and 189 (9.4%) of them contain
S2R on title. Reporters write S2R in the first comment in 1,954 (98.3%) bug reports. There are 848
bug reports containing S2R right after the key word “reproduce”. Among 1,343 bug reports contain-
ing at least two S2R sentences, 977 (72%) bug reports have two consecutive S2R sentences. Among
953 bug reports that contain more than three S2R sentences, 456 (47.8%) bug reports have three
consecutive S2R sentences. In the equation representation of each rule, “cmti ” suggests sentences
in the ith comment, “M ()” suggests the S2R extraction deep learning model, and “title” suggests
the title of a bug report. For example, by applying the first rule, among all labeled S2R sentences,
only the ones in the comment containing the most number of S2R sentences are used for bug
reproduction.

ReCDroid+ applies one rule at a time for reproducing a crash. If a rule does not take effect, it will
be ignored and ReCDroid+ will move to the next rule. For example, when applying rule 11, if the
bug report does not have any “to produce” text, this rule will be ignored. In the optimum scenario,
developers may use multiple machines (e.g., devices, VMs) to reproduce the same crash in parallel,
where each machine is applied a different rule. The reproduction process terminates if at least one
device successfully reproduces the crash or a timeout occurs. However, in the cases where only
a limited number of machines are available, ReCDroid+ needs to decide the order of rules to be
applied. For example, if a rule does not take effect or fails to reproduce the crash, ReCDroid+ will
decide which rule to apply next. In this case, the choice of rule order may substantially affect how
much time it takes to reproduce a crash.

ReCDroid+ employs a clustering-based prioritization strategy to prioritize rules in terms of their
likelihood of successfully reproducing crashes in a timely manner. The clustering-based strategy
considers the relationships among different rules. Our assumption is that if multiple rules have
similar effects in reproducing the same crash, i.e., successfully reproduce the same crash in a similar
amount of time, they tend to expose similar behaviors. Hence, such rules ought to belong to the
same cluster.

The clustering algorithm is based on the dataset of historical bug reports used for reproduc-
ing crashes (i.e., training dataset). Each bug report in the dataset is recorded as to whether it was
successfully reproduced and the time cost for reproducing it on each refining rule. Each rule is as-
sociated with a vector, where each element in the vector is associated with a bug report, indicating
the time spent (in seconds) on reproducing the bug report. The length of the vector is equal to the
number of bug reports in the dataset. Given a rule, if the bug report failed to reproduce the crash,
the element associated with the bug report is represented as a large negative number (i.e., -1000),
which is used to distinguish it from the successful cases.

We use mean-shift [60], an unsupervised clustering algorithm to cluster the eleven vectors.
Mean-shift is a centroid-based clustering algorithm. Within a given region in a coordinate system,
it updates candidates for centroids to be the mean of the points. While other clustering algorithms,
such as k-mean can also be used, we found that mean-shift performed better in our evaluation.

The algorithm clusters the rules into different groups. Rules in one group share similar behaviors.
Specifically, ReCDroid+ iterates through each group. It selects and removes the rule with the lowest
reproducing time in each group. The selected rules are then sorted from lowest reproducing time

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:12 Y. Zhao et al.

Table 1. S2R Refining Rules

ID Rule Description Rationale

1
i = arg maxi len (M (cmti))
S2Rr = M (cmti)

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract all S2R from cmti .

The comment with the most
extracted S2R sentences is likely
to describe S2R.

2
i = arg maxi len (M (cmti))
S2Rr = extr a1N eib (M (cmti), cmti))

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract neighboring sentences
of the S2R extracted from cmti .

S2R sentences may come from
cmti ’s neighboring sentences.

3
i = arg maxi len (M (cmti))
S2Rr = extr a2N eib (M (cmti), cmti))

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract two neighboring sentences
of the S2R extracted from cmti .

To deal with false negatives.

4
i = arg maxi len (M (cmti))
S2Rr = cmti

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Use all sentences in cmti as S2R.

To deal with false negatives.

5 S2Rr = cmt [0] Use the first comment as S2R.
Reporter tends to report S2R
in the first comment.

6
i = arg maxi len (cmti)
S2Rr = cmti

Use the comment with the largest
number of sentences as S2R.

This comment may contain more
information than others.

7 S2Rr = t it le Use title as S2R.
Reporters may write S2R on the
title of the bug report.

8 S2Rr =
∑

i cmti Use all comments as S2R.
S2R may spread across
multiple comments.

9 S2Rr =
∑

i cmti + t it le Use all texts of the bug report as S2R. To deal with false negative.

10
S2Rr = t it le
if len (M (t it le)) > 0

Use the title only when it is an
extracted S2R sentence.

Similar to rule 7, but it saves time
when the title is not S2R.

11

sent Index, l inei =

f ind F ir st (“tor eproduce ′′, l ine)
S2Rr = extaf ter (extr a2N eib (

M (l inei), l inei)), sent Index)

(1) Find the text line l inei containing
“to reproduce”.
(2) Use the two neighboring sentences
from extracted S2R right after l inei .

Sentences after “to reproduce” is
likely to be S2R.
This rule reduces duplicated S2R.

to the highest reproducing time and added to a list L. The rationale is that rules in the same group
tend to have same capability in reproducing crashes. This process continues until all rules are
removed from the groups. During the crash reproducing process, a rule is iteratively removed
from the head of the list L and used to extract S2Rs until the crash is successfully reproduced.

3.2 Bug Report Analysis

ReCDroid+ uses 15 grammar patterns (summarized from the 22 patterns [10]) to extract the the
semantic representations of events (i.e., the tuple {action, GUI component, input}) described in a
bug report.

3.2.1 Grammar Patterns. The 15 grammar patterns were derived from the corpus of 813 An-
droid bug reports described in Section 2.1. These patterns are broadly applicable and can be reused
(e.g., by compiling them into a library) for new Android bug reports. Specifically, for each bug
report we analyzed the dependencies among words and phrases in the sentences describing repro-
ducing steps. Specifically, we use SpaCy’s grammar dependency analysis to identify the part-of-

speech (POS) tag (e.g., noun, verb) of each word within a sentence, parse the sentence into clauses
(e.g., noun phrase), and label semantic roles, such as direct objects. Figure 6 shows an example of
the results of the spaCy dependency analysis on two sentences with different structures.

Broadly, the grammar patterns could be grouped into three types of interactions with an app:
click events (e.g., click buttons, check checkboxes), edit events (e.g., enter a text box with a number),
and gesture events (e.g., rotate). Table 2 lists the eight typical grammar patterns (the full list can
be found in our artifacts [8]). Column 3 shows the percentage of the 813 bug reports in which each
grammar pattern applies. We next describe these patterns.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:13

Fig. 6. Examples of Dependency Trees.

Table 2. Summary of Grammar Patterns

Category ID Pct. Grammar Pattern Example Event Tuple

Click
CR1 22.7% action→ dobj (→NP) Click[act ion] {easy level[dob j] }[N P] <click, (easy) level>
CR2 1.3% action→ nsubjapss (→ NP) {Easy level[dob j] }[N P] is clicked[act ion] <click, (easy) level>
CR3 14% action→ pobj (→ NP) I made a click[act ion] on {easy level[pob j] }[N P] <click, (easy) level>
CR4 0.2% CR* + ‘‘multiple’’/‘‘twice’’/‘‘times’’ Click[act ion] {easy level[pob j] }[N P] many times <multi-click, (easy) level>
CR5 0.7% CR* + ‘‘long’’ Long click[act ion] {easy level[pob j] }[N P] <long-click, (easy) level>
CR6 6.3% action→ amod/compound (→ NP) Clicking[act ion] {easy level[amod]}[N P] <click, (easy) level>

Edit
TR1 13.1%

action→dobj|obj|attr→prep→pobj (→NP) Input[act ion] xxyyzz[dob j] to[pr ep] {server
<input, (server) address, xxyyzz>

prep ∈ {on,in,to} address[pob j] }[N P]

TR2 3.3%
action→dobj|obj|attr(→NP)→prep→pobj Input[act ion] {server address[dob j] }N P <input, (server) address, xxyyzz>
prep ∈ {with, by} with[pr ep] xxyyzz[pob j]

TR3 0.9%
action→dobj|obj|attr(→NP)→prep→pobj Change[act ion] {server

<change, (server) address, xxyyzz>
prep ∈ {to, with}, action ∈ {change} address[dob j] }N P to[pr ep] xxyyzz[pob j]

TR4 2% TR1|TR2|T3 + EG (→NP)
Input[act ion] a number[dob j] to kilometer[pob j] , <input, kilometer, 10>
e.g., {10}

TR5 7.3% TR1|TR2|T3|T4 + NUM→ UNIT I input 10[N U M] km[U N IT] , <input, km, 10>
TR6 16.5% action→dobj|pobj(→NP) I fill[act ion] xxyyzz[dob j] , <input, *, xxyyzz>
TR7 1.6% action(leave)→dobj|obj(→NP) I leave[act ion] address[dob j] , <input, address, “ ”>

Gesture
NR1 0.7% action(rotate) Rotate[act ion] the screen <rotate>
NR2 7.8% action(back) Back[act ion] to before page. <back>

Click Events. ReCDroid+ uses six grammar patterns to extract the click event tuple. The “input”
element in the tuple is not applicable to click events. In Table 2, CR1 specifies that the direct object
(i.e., dobj) of the click action is the target GUI component. Also, the noun phase (NP) of the direct
object corresponds to the target GUI component. The second pattern (CR2) identifies the GUI
component that has an nsubjpass (i.e., passive nominal subject) relation with the action word. The
third pattern (CR3) specifies that the object of a preposition (pobj) of the click action is the
target GUI component.

Edit Events. We identified seven grammar patterns for extracting edit events. In Table 2, the first
grammar pattern (TR1) specifies that if the preposition is a word in {on,in,to}, the direct object

(dobj) is the input value and the preposition object (pobj) is the target GUI component. On the
other hand, in the second pattern (TR2), if the preposition is with or by, the direct object (dobj) is
the GUI component and the preposition object (pobj) is the input value. The change action requires
a special grammar pattern to handle (TR3) because the preposition object is often preceded by a
target GUI component and followed by an input value.

As for the fourth grammar pattern (TR4), we observe that words happening after the phrase
(EG) containing an introducing example (e.g., e.g., example, say), especially NOUN, often involve
input values. Therefore, TR4 specifies that if the sentence prior to EG contains a user action and a
GUI component detected by a grammar pattern (TR1, TR2, or TR3), then EG contains an input value
associated with the GUI component. To extract the input value, ReCDroid+ first extracts the NOUN
from EG and the NP is identified as an input value. For TR5, ReCDroid+ searches for the word right
after the number and if the word is a unit (UNIT∈{kg, cm, litter}), it is considered to be a target GUI
component. The number is identified as an input value.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:14 Y. Zhao et al.

Gesture Events. The grammar patterns for gesture events involve only the “action” element in the
event tuple. The current implementation of ReCDroid+ supports only the rotate event. Neverthe-
less, our grammar patterns can be extended by incorporating other events, such as zoom and swipe.

3.2.2 Extracting Event Representations. Given a bug report, ReCDroid+ uses the grammar pat-
terns to extract event representations (i.e., event tuples) relevant for reproducing bugs. ReCDroid+
first splits the crash description into sentences, where sentence boundaries are detected by syn-
tactic dependency parsing from SpaCy [38]. It then applies stemming [44]3 to the words in each
sentence with each word assigned a sentence ID (used for the guided exploration).

Next, ReCDroid+ determines if a sentence describes a specific type of event. To do this, we
construct a vocabulary containing words that are commonly used to describe the three types of
actions (e.g., “click”, “enter”, “rotate”). This vocabulary was manually constructed by manually
analyzing the corpus of 813 bug reports. The frequency distribution of the words in the vocabulary
can be found in our artifacts [8]. ReCDroid+ then matches each sentence (using the stemmed
words) against the vocabulary and if any match is found, the grammar patterns associated with
the event type are applied to the sentence for extracting the target GUI components and/or input
values. For example, the 4th step in Figure 1 contains a word “change”, so the grammar pattern
TR3 is applied.

3.2.3 Limitations of Using Grammar Patterns. The grammar patterns can be used to extract
event tuples from well-structured sentences. However, in the case of complicated or ambiguous
sentences, NLP techniques are likely to render incorrect part-of-speech (POS), dependency tags,
or sentence segmentation. While this problem can be mitigated by training the tags [68], it comes
with an additional cost. Moreover, the extracted target GUI components from the bug report may
not match their actual names in the app. Such inaccuracy and incompleteness may negatively
impact the efficiency of the dynamic exploration. Section 3.3.2 illustrates how ReCDroid+ obtains
additional information from unstructured texts to address the mismatch between bug reports and
target apps.

3.3 Guided Exploration for Reproducing Crashes

The goal of the second phase is to identify short sequences of events that complete the sequence
identified in the first phase and allow it to fully and automatically reproduce the reported crash.
To do this, ReCDroid+ builds and uses a Dynamic Ordered Event Tree T = (V , E) to guide an ex-
ploration of the app’s GUI. The set of nodes, V , represents the app’s GUI components, and the set
of edges, E, represents event transitions (i.e., from one screen to another by exercising the com-
ponent) observed at runtime. The tree nodes of each level (i.e., screen) are ordered (shown as left
to right) according to the descending order of their relevance to the bug report. The details of
determining the relevancy of GUI components is described in Section 3.3.1.

During the exploration, ReCDroid+ iteratively selects, for each screen, the most relevant com-
ponent (the leftmost node of the subtree associated with the screen). If none of the GUI compo-
nents match the bug report, ReCDroid+ traverses the tree leaves to select another matching but
unexplored GUI component to execute. This process continues until all matching components in
previous levels (i.e., screens) are explored before navigating to the subsequent screens to expand
tree levels. Compared to conventional DFS, our search strategy can avoid potential traps. The ad-
vantage of using the DOET is that by prioritizing the GUI components, the leaf traversal would

3Stemming is the process of removing the ending of a derived word to get its root form. For example, “clicked” becomes

“click”.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:15

ALGORITHM 1: Guided Dynamic Exploration

Require: App , stemmed words from bug report: W , Eд
Ensure: Script R /*sequence of events leading to the reported crash*/
1: S ← <Launch>
2: T .root ← Launch
3: while time < LIMIT do
4: P ← Execute(S, App)
5: if P triggers BR’s crash then
6: R ← Save (S)
7: return
8: if IsAddLeafNodes (T , S .last) is true then
9: U ← GetAllElem (P)

10: for each GUI element u ∈ U do /*current screen*/
11: if IsMatch(u, Eд, W) is true then
12: u .status← r eady /*can be explored*/

13: end for
14: T ← AddOrderedNodes (U , OrderCr iter ia)

15: if for all Leaf N odes ∈ T is explored then
16: return
17: if for all Leaf N odes ∈ T is not r eady then
18: Leaf N odes ← r eady /*need backtrack*/

19: S ← FindSequence(T) /*select a GUI component to explore*/

always select the leftmost relevant tree leaf to explore without iterating through all components
on the screen.

3.3.1 ReCDroid+’s Guided Exploration Algorithm. Algorithm 1 outlines the algorithm of ReC-
Droid+’s dynamic exploration. The algorithm begins by launching the app (Line 1) and then enters
a loop to iteratively construct a dynamic ordered event tree (DOET) (Lines 3 – 19). At each it-
eration, ReCDroid+ uses the tree to compute an event sequence S (Line 19) to be executed in the
next iteration (Line 4). The algorithm terminates when (1) the reported crash is successfully re-
produced (Lines 5–7), (2) all paths in the tree are executed (Lines 15–16), or (3) a timeout occurs
(Line 3). During the exploration, ReCDroid+ may accidentally trigger crashes different from the
one described in the bug report. ReCDroid+ prompts the user when a crash is detected and lets
the user decide if it is the correct crash for the purpose of terminating the search.

After exercising the last GUI component from the event sequence S, ReCDroid+ determines
whether the DOET should be expanded (Line 8). If a loop or an equivalent screen is detected
(discussed in Section 3.3.4), ReCDroid+ stops exploring the GUI components in the current screen.
Otherwise, ReCDroid+ obtains all GUI components from the current screen and matches them
against the bug report (Algorithm 2). It then orders these components and adds them as the leaf
nodes of the last exercised GUI component (Lines 9–14).

A GUI component is considered to be relevant to the bug report and ordered on the left of the tree
level when the following conditions are met: (1) it matches the bug report and was not explored in
previous levels; (2) upon meeting the first condition, it appears earlier in the bug report according
to its associated sentence ID; (3) it is a clickable component and does not meet the first condition,
but its associated editable component matches the bug report (because only by exercising the
clickable component can the exploration bring the app to a new screen); (4) upon meeting any
of the above conditions, it is naturally more dangerous. Our current implementation considers OK
and Done as naturally more dangerous components (Finding 4), because the former component is
more likely to bring the app to a new screen. The conditions (1) and (2) consider the order of S2R
during the exploration, so that ReCDroid+ can avoid duplicate and incorrect matching.

The routine FindSequence (Line 19) determines which GUI component to explore next to find
an event sequence to execute in the next iteration. If any components in the current tree level
are relevant to the bug report, it selects the leftmost leaf and appends it to S. If none of these
components are relevant, ReCDroid+ traverses the tree leaves from left to right until finding a

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:16 Y. Zhao et al.

ALGORITHM 2: IsMatch
Require: GUI component in app: u , Events detected by grammar patterns: Eд , A set of bug report sentences: S
Ensure: A boolean value
20: for each event д ∈ Eд do

21: if u .similar (д.u) > 0.8 then /*use Word2vec*/
22: if e .action is edit then
23: u .setText (д.input)

24: return true
25: end for
26: Wb ← GenerateNGram (S - Eд .S)
27: Wu ← GenerateNGram (u)
28: for each wu ∈Wu do
29: for each wb ∈Wb do
30: if wu .similar (wb) > 0.8 then
31: if e .action is edit then
32: u .setText (D)

33: return true
34: end for
35: end for
36: return f alse

leaf node that is relevant to the bug report. Instead of adding backtracking steps to S, ReCDroid+
finds the suffix path from the leaf to root to be executed in the next iteration. The goal of this is
to minimize the size of the event sequence. If the algorithm detects that none of the leaf nodes
are relevant to the bug report, it means that we may need to deepen the exploration to discover
more matching GUI components. Therefore, ReCDroid+ resets all leaf nodes to ready in order to
continue the search (Line 19–20).

DOET does not capture the rotate action because it is not a GUI component. In addition, be-
cause of the possible missing information in the bug report, it is hard to determine the location of
the rotate action. Therefore, we need to find the right locations in an event sequence to insert the
rotate action (Line 4). We use a threshold R to specify the maximum number of steps to the last
event at which rotate was exercised. Finding 2 shows that a crash often occurs 1–2 steps after
the rotate. Therefore, by default, R = 2.

3.3.2 Dynamic Matching. To determine whether a GUI component matches a bug report
(Line 11), ReCDroid+ utilizes Word2vec [47], a word embedding technique, to check if the con-
tent of the GUI component is semantically similar with any of the extracted event representations
or the words from sentences in which grammar patterns cannot be used. Word2vec uses a neural
network model to learn word embedding from a large corpus of text. Word2vec represents each
word by a numerical vector. Cosine similarity score in the range of [0, 1] between vectors of two
words suggests the semantic similarity between words (1 indicates an exact match). The Word2vec
model is trained from a public dataset text8 containing 16 million words and is provided along
with the source code of Word2vec [7]. The model uses a score in the range of [0, 1] to indicate
the degree of semantic similarity between words (1 indicates an exact match). ReCDroid+ uses a
relatively high score, 0.8, as the threshold. We observed that using a low threshold may misguide
the search toward an incorrect GUI component. For example, the similarity score of “start” and
“stop” is 0.51 but the two words are not synonymous.

Algorithm 2 outlines the process of matching a GUI component observed at runtime. ReCDroid+
first compares the observed GUI component (u) with the event tuples (Eд) to detect if there is a
match. If u is an editable component, the corresponding input values from e are filled into the
text field (Lines 21–24). If no matches are found from the previous step, ReCDroid+ analyzes the
sentences in which grammar patterns do not apply (Lines 26 – 35). It generates n-grams4, from both

4An n-gram is a contiguous sequence of n items from a given sequence of text, which has been widely used in information

retrieval [72] and natural language processing [23].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:17

Fig. 7. The steps of reproducing the crash described in Figure 1.

the bug report description and the GUI component u (Lines 26 – 27). ReCDroid+ then compares
the content of the GUI component against the bug report based their generated grams (Lines 28 –
30). We consider unigrams (single word tokens) and bigrams (two consecutive word tokens) that
are commonly used in existing work [19, 59, 67].

If an editable GUI component does not match any events extracted from grammar patterns,
ReCDroid+ associates the component with the following values (D in Line 32): 1) input values
for other editable components extracted by grammar patterns that match the data type (e.g., digit,
string) of the editable component, and 2) special symbols appearing in the bug report, such as
“apostrophe”, “comma”, and “quote” because we observed that such symbols are likely to cause
problems (Finding 3). If neither of the two types of values can be found in the bug report, ReCDroid+
randomly generates one.

3.3.3 A Running Example. Figure 8 shows a partial DOET for the example in Figure 7. The
shaded nodes indicate the GUI components leading to the reported crash. ReCDroid+ first
launches the app and brings the app to the screen in Figure 7(a). There is one clickable GUI
component G in the screen, which is not relevant to the bug report. Since by traversing the leaf
nodes (only G) ReCDroid+ does not find any relevant component, it sets the status of component

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:18 Y. Zhao et al.

Fig. 8. Dynamic Ordered Event Tree (DOET) for Figure 7.

G to ready and continues the search (Lines 17–18). In the second iteration, ReCDroid+ clicks
component G and brings the app to Figure 7(b). ReCDroid+ ranks the GUI components in the
current screen and adds them to the tree (Lines 8–16). Specifically, the first four components
(i.e., A, S , R, RR) match the bug report description and are ordered on the left of the tree level.
Internally, the four components are ranked in terms of the orders of their appearance in the
bug report. ReCDroid+ then checks all nodes in the current level (Figure 7(b)) and selects the
leftmost leaf (A) to execute, which brings the app to the screen of Figure 7(c). At this tree level, A
is placed on the right because it has been explored before. In the fourth iteration, exercising the
leftmost leaf node S brings the app to Figure 7(d), since the editable component Server matches
the bug report description, its corresponding input value is filled in and the associated clickable
components are considered to be relevant. Because OK is more likely to bring the app to a new
screen, it is ordered before Cancel. In the last iteration (Figure 7(d)), both A and S are placed on
the right because they have been explored. Lastly, R is executed and the crash is triggered.

We next illustrate how ReCDroid+ backtracks. Suppose in Figure 7(c), none of the components
are relevant to the bug report, ReCDroid+ would traverse the leaf nodes of the whole DOET from
left to right until finding a matching and unexplored GUI component. Therefore, component S in
the screen of Figure 7(b) would be selected. So in the next iteration, ReCDroid+ restarts the search
and executes the sequence L → G → S .

3.3.4 Optimization Strategies. ReCDroid+ employs several optimization strategies to improve
the efficiency of the algorithm by avoiding exploring irrelevant GUI components (Line 8). For
example, ReCDroid+ checks if the current screen is the same as the previous screen. A same screen
may suggest either an invalid GUI component was clicked (e.g., a broken button) or the component
always brings the app to the same screen (e.g., refresh). In this case, creating children nodes for
the current screen can potentially cause the algorithm to explore the same screen again and again.
To address this problem, ReCDroid+ sets the status of the last exercised GUI componentG to dead
to avoid expanding the tree level fromG. We also develop an algorithm to detect loops in each tree
path. For example, in a path DABCABCABC , the subsequence ABC is visited three times in a row.
In this case, ReCDroid+ keeps only one subsequence and the leaf node is set to dead , so the loop
will not be explored in the future.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:19

4 EMPIRICAL STUDY

To evaluate ReCDroid+, we consider five research questions:

RQ1: How effective and efficient is ReCDroid+ at reproducing crashes in bug reports?
RQ2: How effective and efficient is ReCDroid+ at extracting S2R sentences and crash sentences?
RQ3: To what extent do the NLP techniques in ReCDroid+ affect its effectiveness and efficiency?
RQ4: Does ReCDroid+ benefit developers compared to manual reproduction?
RQ5: Can ReCDroid+ reproduce crashes from different levels of low-quality bug reports and bug

reports written by other reporters?

4.1 Datasets

We need to prepare datasets for evaluating our approach. To avoid overfitting, we do not consider
the 813 Android bug reports that we used to identify the grammar patterns. Instead, we randomly
crawled an additional 360 bug reports containing the “keywords crash and exception” from GitHub.
We next included all 15 bug reports from the FUSION paper [56] and 25 bug reports from a recent
paper on translating Android bug reports into test cases [32]. FUSION considers the quality of these
bug reports as low, so we aim to evaluate whether ReCDroid+ is capable of handling low-quality
bug reports. This process yields a total of 400 bug reports.

We then manually filtered the 400 collected bug reports to get the final set that can be used in our
experiments. This filtering was performed independently by three graduate students, who have 2-4
years of industrial software development experience. We first filtered bug reports involving actual
app crashes, because ReCDroid+ focuses on crash failures. This yielded 320 bug reports. We then
filtered bug reports that could be reproduced manually by at least one inspector, because some
bugs could not be reproduced due to lack of apks, failed-to-compile apks, environment issues, and
other unknown issues. These bug reports cannot assess ReCDroid+ itself and thus was excluded
from the dataset. In total, we evaluated ReCDroid+ on 66 bug reports from 37 apks. The cost of
the manual process is quite high: the preparation of the dataset required around 500 hours of
researcher time.

To train the deep learning model for extracting S2R and crash sentences, we crawled 3,233 bug
reports from Github and 7,666 bug reports from Google Code and randomly selected 4,000 bug
reports to build the dataset. These bug reports are different from the 66 bug reports in the testing set.
During the manual inspection, we read the reports with sufficient details in the bug descriptions
and examined the discussions posted by commentators to decide if a sentence is an S2R or not. To
ensure the correctness of our results, the manual labeling process was performed independently by
two graduate students. We measured the agreement between the two graduates by using Cohen’s
Kappa (k) [22], which can be used to assess the agreement between two raters. Cohen’s Kappa
produces values between 0 and 1, where 0 indicates poor agreement and 1 perfect agreement.
For extracting S2R sentences, k = 0.86. For the extraction of crash sentences, k = 0.84. The results
suggest that the labeling process is reliable. Any time there was dissension, a third graduate student
was involved and they discussed until reaching a consensus. Note that we spent about 20 hours
training the three students on how to analyze the bug reports and label S2R sentences. To make
sure they understood the process, we asked the students to start with a small number of bug reports
from the dataset.

4.2 Implementation

We conducted our experiment on a physical x86 machine running with Ubuntu 16.04. This machine
has i7-4790 CPU @ 3.60GHz and 32 GB memory with no GPU. The NLP techniques of ReCDroid+
was implemented based on the SpaCy dependency parser [38]. The dynamic exploration compo-

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:20 Y. Zhao et al.

nent was implemented on top of two execution engines, Robotium [79] and UI Automator [6], for
handling apps compiled by a wide range of Android SDK versions. An apk compiled by a lower
version Android SDK (<6.0) can be handled by Robotium and that by a higher version SDK (>5.0)
can be handled by UI Automator.

4.3 Experiment Design

4.3.1 RQ1: Effectiveness and Efficiency of ReCDroid+. We measure the effectiveness and effi-
ciency of ReCDroid+ in terms of whether it can successfully reproduce crashes described in the
bug reports within a time limit (i.e., 22 hours) and efficiency in terms of the time it took to repro-
duce each crash. The default setting is 22 hours because ReCDroid+ spends two hours trying out
every rule with a total cost of 22 hours (11 rules*2 hours). In fact, we found that ReCDroid+ can
reproduce all reproducible bug reports in three hours. To ensure the crash found by ReCDroid+ is
the same as the one described in the bug report, for each crash found by ReCDroid+, we manually
inspect the bug report to determine if it is the reported one. If an error stack trace is provided in the
bug report, we manually compared the stack trace with the stack trace generated by ReCDroid+
to see if they are identical.

4.3.2 RQ2: Effectiveness and Efficiency of ReCDroid+ in extracting S2R and crash sentences. We
performed a five cross-validation on the 4,000 labeled bug reports. Of these five folds, four folds
are used to train the deep learning model while the 5th fold is used to evaluate the performance
of the model. We used precision, recall, and F-measure to evaluate the effectiveness of ReCDroid+
in extracting S2R and crash sentences. We consider F-measures over 0.7 to be good [26]. When
measuring the efficiency, we calculated the time (in seconds) spent on the extraction.

In addition, we evaluated the performance refining rules, i.e., whether they can increase the
success rate of crash reproduction. Specifically, we calculated the time of crash reproduction with
the refining rules. The refining rules were applied to ReCDroid+ one by one with the clustering-
based prioritization strategy described in Section 3.1.3. We showed the results on reproducing
success and time on each single refining rule.

4.3.3 RQ3: The Role of NLP in ReCDroid+. Within ReCDroid+, we assess whether the use
of the NLP techniques can affect ReCDroid+’s effectiveness and efficiency. We consider two
“vanilla” versions of ReCDroid+. The first version, ReCDroid+N , is used to evaluate the effects
of using grammar patterns. ReCDroid+N does not apply grammar patterns, but only enables
the second phase on dynamic matching. The second version is ReCDroid+D , which evaluates
the effects of applying both grammar patterns and dynamic matching. The comparison between
ReCDroid+D and ReCDroid+N can assess the effects of using dynamic matching. ReCDroid+D is
a non-guided systematic GUI exploration technique (discussed in Section 6). The time limits for
running ReCDroid+N and ReCDroid+D were also set to three hours.

4.3.4 RQ4: Usefulness of ReCDroid+. The goal of RQ4 is to evaluate the experience developer
had using ReCDroid+ to reproduce bugs compared to using manual reproduction. We are con-
cerned about whether ReCDroid+ can reproduce crashes faster than manual reproduction and
save developers’ effort because of its automation. We recruited 12 graduate students as the partici-
pants. All had at least six months of Android development experience and three were real Android
developers working in companies for three years before entering graduate school. Each participant
read the 54 bug reports and tried to manually reproduce the crashes. All apps were preinstalled.
For each bug report, the 12 participants (the three graduate students who built the dataset are not
included) timed how long it took for them to understand the bug report and reproduce the bug. If
a participant was not able to reproduce a bug after 30 minutes, that bug was marked as not repro-

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:21

duced. After the participants attempted to reproduce all bugs, they were asked to use ReCDroid+
on the 54 bug reports. This was followed by a survey question: would you prefer to use ReCDroid+
to reproduce bugs from bug reports over manual reproduction? We also let the participants write
down their thoughts about using ReCDroid+. Note that to avoid bias, the participants were not
aware of the purpose of this user study.

4.3.5 RQ5: Handling Low-Quality Bug Reports. The same bug may be reported in different qual-
ity levels by different reporters. The goal of RQ5 is to assess the ability of ReCDroid+ to handle
different levels of low-quality bug reports for the same bug. Since judging the quality of a bug re-
port is often subjective, we created low-quality bug reports by randomly removing a set of words
from the original bug reports. Some words in the original bug reports are not related to S2R or
exist in duplicated S2R, so removing them may not reduce the quality of bug reports . Therefore,
we focused on removing words from texts containing unduplicated S2R sentences.

Randomly removing words from S2R can simulate two scenarios. The first scenario is missing
S2R because removing certain words may cause the loss of information in the entire S2R, such
as which button to click or what text to enter. The second scenario is the low-quality S2R, in
which the grammar is too poor to be understood by humans or effectively handled by ReCDroid+.
For example, the bug report olam-2 contains a S2R sentence “Force Close when enter word with
apostrophe”. If we remove the word “enter”, the sentence is not easy to be understood. If we remove
key word “apostrophe”, the bug report would be very difficult to reproduce.

Specifically, we considered three variations for each of the 42 bug report reports reproduced
by ReCDroid+ in order to mimic different levels of quality: (1) removing 10% of the words,
(2) removing 20% of the words, and (3) removing 50% of the words. Due to the randomization
of removing words from bug reports, we repeated the removal operation five times for each
bug report across the three quality levels. We evaluate the effectiveness and efficiency of ReC-
Droid+ in reproducing crashes in the 630 (42 × 3 × 5) bug reports. Again, the time limit was set to
3 hours.

4.3.6 RQ6: Handling Bug Reports Generated by Different Users. Given a bug, different reporters
may describe it in different language styles. To assess the ability of ReCDroid+ to handle bug
reports written by different users, we recruited another four participants to write bug reports using
a template similar to Figure 1 for the 42 crashes reproduced by ReCDroid+. To avoid introducing
bias from the original bug reports, we recorded videos of the steps needed to manually reproduce
the crash for every bug report. After viewing the video, each participant was asked to write bug
reports for the 42 crashes. In total, the participants constructed 168 bug reports. We then evaluated
the effectiveness and efficiency of ReCDroid+ in reproducing the 168 bug reports.

5 RESULTS AND ANALYSIS

Table 3 summarizes the results of applying ReCDroid+, ReCDroid+N , and ReCDroid+D in 54 out
of the 66 bug reports. We did not include the remaining 12 crashes because they failed to be re-
produced due to the technical limitations of the two execution engines rather than ReCDroid+.
For example, Robotium failed to click certain buttons (e.g., [3]). Column 2 shows the number of
reproducing steps in each bug report. Columns 3–20 show whether the technique successfully
reproduced the crash, the size of the event sequence, and the time each technique took.

5.1 RQ1: Effectiveness and Efficiency of ReCDroid+

As Table 3 shows, ReCDroid+ reproduced 42 out of 54 crashes, a success rate of 77.7%. The
time required to reproduce the crashes ranged from 16 to 7,331 seconds with an average time of
466.4 seconds. All four crash bug reports (marked with �) from the FUSION paper [56] and eight

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:22 Y. Zhao et al.

Table 3. RQ1, RQ4, RQ5: Different Techniques

#BR. # steps Reproduce Success # Event in Sequence Time (Seconds) User
RD RDN RDD Sap. St. Mon. RD RDN RDD Sap. St. Mon. RD RDN RDD Sap. St. Mon. (12)

newsblur-1053 5 Y Y Y Y Y N 7 7 7 360 23 - 47 64 132.3 483 10 > 12

markor-194 3 Y N N N N N 4 - - - - - 1222 > > > > > 12

birthdroid-13 1 Y Y Y N Y N 8 8 8 - 10 - 351 351 1089 > 6600 > 9

car-report-43� 4 Y Y Y N N N 18 18 16 - - - 600 602 101 > > > 8

opensudoku-173 8 Y N N N N N 9 - - - - - 633 > > > > > 10

acv-11� 5 Y Y Y N N N 8 8 5 - - - 479 467 2060 > > > 7

acv-12 4 Y Y Y N N N 4 4 4 - - - 107 108 960 > > > 12

anymemo-18 1 Y Y Y Y Y Y 3 3 3 204 6 7900 150 148 798 245 282 417 11

anymemo-422 3 Y N N N N N 2 - - - - - 257 > > > > > 12

anymemo-440 4 Y Y N N N N 8 8 - - - - 1168 1185 > > > > 12

notepad-23� 3 Y Y Y N N N 6 6 6 - - - 186 194 1731 > > > 11

olam-2� 1 Y N N Y N N 2 - - 354 - - 36 > > 122 > > 7

olam-1 1 Y N N N N N 2 - - - - - 19 > > > > > 11

FastAdapter-394 1 Y Y Y Y Y Y 1 1 1 364 13 6900 26 23 445 123 1860 385 9

LibreNews-22 4 Y Y Y Y Y Y 6 6 5 394 198 30700 126 111 729 1203 120 1729 12

LibreNews-23 6 Y N N N Y Y 3 - - - 516 46600 60 > > > 480 2669 12

LibreNews-27 4 Y Y Y Y Y Y 6 6 5 394 198 30700 116 132 1075 1203 120 1729 11

SMSSync-464 2 Y Y Y N Y N 4 4 4 - 12 - 787 740 5194 > 2258 > 10

transistor-63 5 Y Y Y Y N Y 3 3 3 283 - 1200 28 27 65 120 > 74 12

zom-271 5 Y Y Y Y Y Y 5 5 5 273 2230 1100 75 87 508 72 1800 74 11

PixART-125 3 Y Y Y N N Y 5 5 5 - - 58000 581 607 1032 > > 3068 12

PixART-127∗ 3 Y Y Y N N N 5 5 5 - - - 146 146 992 > > > 12

ScreenCam-25∗ 3 Y Y N - N Y 6 6 - - - 14586 787 795 > - > 3600 11

ventriloid-1 3 Y N N N N Y 9 - - - - 700 56 > > > > 36 11

Nextcloud-487 1 Y Y Y N N N 2 2 2 - - - 69 62 944 > > > 11

obdreader-22 4 Y Y N N N N 8 8 - - - - 912 929 > > > > 12

dagger-46∗ 1 Y Y Y - Y Y 1 1 1 - 419 2500 18 18 21 - 420 1155 12

ODK-1402 2 Y N N N N N 2 - - - - - 73 > > > > > 10

ODK-2075 2 Y Y Y N N N 3 3 3 - - - 91 90 2249 > > > 12

ODK-2086 2 Y Y Y N N N 3 3 3 - - - 101 95 2982 > > > 12

ODK-2191 1 Y Y Y N N N 3 3 3 - - - 231 227 2212 > > > 12

ODK-2525 2 Y Y Y - N N 2 2 2 - - - 47 55 191 - > > 7

ODK-2601 2 Y Y N - N N 3 4 - - - - 193 190 > - > > 10

k9-3255 2 Y N N N N N 4 - - - - - 7331 > > > > > 12

k9-2612∗ 4 Y Y Y - N N 4 4 2 - - - 179 180 5731 - > > 10

k9-2019∗ 1 Y Y Y - N N 3 3 3 - - - 57 65 1352 - > > 11

Anki-4586∗ 5 Y Y N - N N 7 7 - - - - 99 100 > - > > 12

TagMo-12∗ 1 Y Y Y - N N 1 1 2 - - - 16 15 30 - > > 12

FlashCards-13∗ 4 Y Y Y - N N 3 3 3 - - - 68 70 94 - > > 12

Gnu-596 2 Y N N - N N 1 - - - - - 18 > > - > > 12

Gnu-633 2 Y N N - N Y 4 - - - - 40400 72 > > - > 1976 12

TimeTracker-35 2 Y Y Y - N Y 4 4 4 - - 126500 1974 1963 857 - > 6989 10

TimeTracker-10 1 N N N - N N - - - - - - > > > - > > 10

TimeTracker-138 4 N N N - N N - - - - - - > > > - > > 10

FastAdaptor-113 2 N N N - N N - - - - - - > > > - > > 7

Memento-169 3 N N N N N N - - - - - - > > > > > > 2

ScreenCam-32 1 N N N N N N - - - - - - > > > > > > 10

ODK-1796 2 N N N Y N N - - - 254 - - > > > 138 > > 4

AIMSICD-816 3 N N N N N N - - - - - - > > > > > > 1

materialistic-76 6 N N N N N N - - - - - - > > > > > > 5

Gnu-663 2 N N N - N N - - - - - - > > > - > > 11

Fdroid-1821 5 N N N - N N - - - - - - > > > - > > 10

Shortyz-135 1 N N N - N N - - - - - - > > > - > > 5

PdfViewer-33 4 N N N - N N - - - - - - > > > - > > 5

total 42 31 26 8 10 13

RD. = ReCDroid+. St. = Stoat Mon. = Monkey Sap. = Sapienz “�” = Crash reproduced. “N” = Crash not reproduced.

“-” = Not applicable. “>” = exceeded time limit (22 hours).

bug reports (marked with ∗) from Yakusu [32] were successfully reproduced. The results indicate
that ReCDroid+ is effective in reproducing crashes from bug reports. The 12 cases where ReCDroid+
failed will be discussed in Section 6.

For six of the twelve cases where ReCDroid+ failed, we found that the failures were due to
the following reasons. First, ReCDroid+ does not support scroll or swipe action (FastList-113,
materialistic-1067, AIMSICD-816). Second, ReCDroid+ cannot deal with non-deterministic
behaviors of the apps (Memento-169, Shortyz-135).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

https://github.com/samuelclay/NewsBlur/issues/1053
https://github.com/gsantner/markor/issues/194
https://github.com/rigid/Birthdroid/issues/13
https://bitbucket.org/frigus02/car-report/issues/43/infinity-100-km-and-plot-deathlock
https://code.google.com/archive/p/opensudoku-android/issues/173
https://github.com/robotmedia/droid-comic-viewer/issues/11
https://github.com/robotmedia/droid-comic-viewer/issues/12
https://code.google.com/archive/p/anymemo/issues/18
https://github.com/helloworld1/AnyMemo/issues/422
https://github.com/helloworld1/AnyMemo/issues/440
https://code.google.com/archive/p/banderlabs/issues/23
https://github.com/vishnus/Olam/issues/2
https://github.com/vishnus/Olam/issues/1
https://github.com/mikepenz/FastAdapter/issues/394
https://github.com/milesmcc/LibreNews-Android/issues/22
https://github.com/milesmcc/LibreNews-Android/issues/23
https://github.com/milesmcc/LibreNews-Android/issues/27
https://github.com/ushahidi/SMSSync/issues/464
https://github.com/y20k/transistor/issues/63
https://github.com/zom/Zom-Android/issues/275
https://github.com/kriztan/Pix-Art-Messenger/issues/125
https://github.com/kriztan/Pix-Art-Messenger/issues/127
https://github.com/vijai1996/screenrecorder/issues/25
https://code.google.com/archive/p/ventriloid/issues/1
https://github.com/nextcloud/news-android/issues/487
https://github.com/pires/android-obd-reader/issues/22
https://github.com/vestrel00/android-dagger-butterknife-mvp/issues/46
https://github.com/opendatakit/collect/issues/1402
https://github.com/opendatakit/collect/issues/2075
https://github.com/opendatakit/collect/issues/2086
https://github.com/opendatakit/collect/issues/2191
https://github.com/opendatakit/collect/issues/2525
https://github.com/opendatakit/collect/issues/2601
https://github.com/k9mail/k-9/issues/3255
https://github.com/k9mail/k-9/issues/2612
https://github.com/k9mail/k-9/issues/2019
https://github.com/ankidroid/Anki-Android/issues/4586
https://github.com/HiddenRamblings/TagMo/issues/12
https://github.com/ASU-CodeDevils/FlashCards/issues/13
https://github.com/codinguser/gnucash-android/issues/596
https://github.com/codinguser/gnucash-android/issues/633
https://github.com/netmackan/ATimeTracker/issues/35
https://github.com/netmackan/ATimeTracker/issues/10
https://github.com/netmackan/ATimeTracker/issues/138
https://github.com/mikepenz/FastAdapter/issues/113
https://github.com/alexstyl/Memento-Calendar/issues/169
https://github.com/vijai1996/screenrecorder/issues/32
https://github.com/opendatakit/collect/issues/1796
https://github.com/CellularPrivacy/Android-IMSI-Catcher-Detector/issues/816
https://github.com/hidroh/materialistic/issues/1067
https://github.com/codinguser/gnucash-android/issues/663
https://gitlab.com/fdroid/fdroidclient/issues/1821
https://github.com/kebernet/shortyz/issues/135
https://github.com/JavaCafe01/PdfViewer/issues/33

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:23

As a generic GUI exploration and testing tool, ReCDroid+D is similar to existing Android test-
ing tools [9, 16, 20, 52, 65, 66], which detect crashes in an unguided manner. ReCDroid+D was
shown to be competitive with Monkey [9], Sapienz [52], and the recent work Stoat [66] on our
experiment subjects. Since Sapienz only works on the apps with android SDK version 4.4, the com-
parison between ReCDroid+ and Sapienz only uses apps with SDK version 4.4. Monkey, Stoat, and
Sapienz are compared with ReCDroid+ in two hours for reproducing the crash in each bug re-
port. Specifically, as Table 3 shows, ReCDroid+D reproduced 30 more crashes than Stoat, 19 more
crashes than Sapienz, and 27 more crashes than Monkey. For the crashes successfully reproduced
by all three techniques, the size of event sequence generated by ReCDroid+D was 98.8% smaller
than Stoat, 98.8% smaller than Sapienz, and 99.9% smaller than Monkey. With regards to efficiency,
ReCDroid+D required 87.8% less time than Stoat, 87.4% less time than Sapienz, and 87.7% less time
than Monkey.

5.2 RQ2: Effectiveness and Efficiency of Extracting S2R and Crash Sentences

When performing cross-validation on the 4,000 labeled bug reports, for S2R extraction, the preci-
sion, recall, and F1 score is 0.683, 0.722, and 0.702, respectively. For crash sentence extraction, the
precision, recall, and F1 score is 0.756, 0.849, and 0.789, respectively. When using all 4,000 bug re-
ports as the training set and the 52 bug reports of the subject apps as the testing set, the precision,
recall, and F1 scores of S2R sentences extraction are 0.852, 0.821, and 0.836. The crash sentence
extraction results are 0.932, 0.835, and 0.88. ReCDroid+’ reproducing dataset is more accurate than
the random crawled dataset, because bug reports in the reproducing data set is manually filtered to
ensure they are crash reports. These bug reports may have better written quality than the random
crawled dataset, so it is easy to extract the needed information by the deep learning model.

ReCDroid+ failed to identify crash sentences in two apps: car-report-43 and obd-22. In car-
report-43, the crash sentence contains a keyword “deadlock”, which is uncommon in the training
set (i.e., 4,000 bug reports). In obd-22, the crash sentence a word “live”, which prevents the deep
learning model from correctly labeling it as a crash sentence even if this sentence contains the
word “crash”. We hypothesize that a larger dataset may help to mitigate the inaccuracy problem.
As a result, ReCDroid+ failed to automatically reproduce the crashes for these two apps due to
missing oracles. Nevertheless, if the crashes sentences were correctly labeled, ReCDroid+ success-
fully reproduced them.

Regarding efficiency, ReCDroid+ spent four hours on training the deep learning model using
the 4,000 bug reports. The model only needs to be trained once. When applied the model to our
reproducing dataset, it took less than five seconds.

The influences of refining rules. We evaluated the influences of the 12 refining rules on the
effectiveness and efficiency of crash reproduction. As in Table 4 shows, for each bug report, there
exists at least one rule that can successfully reproduce it. On the other hand, none of the rules
were able to reproduce all bug reports. In summary, ReCDroid+ requires at least three rules to
successfully reproduce all bug reports.

Table 4 shows the reproducing times when applying different rules for each bug report. The
times vary significantly. For example, the crash in Nexcloud-487 was reproduced in 47 seconds
with rule-1, but it took 67 minutes to reproduce the crash with rule-2, rule-3, and rule-4. On the
other hand, rules 1–4 shared similar costs to reproduce other bug reports. Also, one rule may cost
much less on one bug report than on another. For example, rule-7 cost less time on timeTrack-35
than rule-1, but the situation is opposite on ODK-2601. Some rules are critical to the success of
reproducing certain bug reports. For example, olam-2 can be only reproduced by rule 7, 9, and
10. This is because the S2R “Force close when enter word with apostrophe” only occurred in the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:24 Y. Zhao et al.

Table 4. RQ3: Different Rules

#BR. Time (sec)
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

newsblur-1053 47 266 163 155 127 127 126 153 160 - -
markor-194 1222 1250 1243 1253 1229 1230 > 1238 1191 - -
birthdroid-13 - - - - 83 84 351 83 351 - -
car-report-43 600 593 592 611 271 260 259 594 593 - -
opensudoku-173 633 556 577 582 571 541 > 686 602 > -
acv-11 479 512 499 512 516 502 1512 525 502 1397 -
acv-12 107 107 107 123 108 110 294 111 95 - 110
anymemo-18 150 145 144 143 39 152 154 42 42 - -
anymemo-422 257 258 259 250 250 250 250 249 249 250 250
anymemo-440 1168 1296 1260 2110 2060 1061 > 1059 1156 > >
notepad-23 - - - - 1497 1505 186 1497 186 186 -
olam-2 - - - - 83 N 83 N 36 79 N 36 37 -
olam-1 - - - - 86 N 84 N 18 88 N 19 - -
FastAdapter-394 26 23 23 27 27 27 495 28 27 513 -
LibreNews-22 126 112 149 152 148 151 714 150 151 - -
LibreNews-23 60 36 39 43 39 36 > 66 59 - -
LibreNews-27 116 184 182 188 187 181 768 328 294 - 71
SMSSync-464 787 810 799 815 823 743 > 728 > > 711
transistor-63 28 26 27 26 26 53 27 28 27 26 -
zom-271 75 73 74 89 90 90 392 90 89 - 73
PixART-125 581 574 578 585 584 588 1482 583 5633 1481 583
PixART-127 146 139 147 141 143 146 418 141 297 417 141
ScreenCam-25 787 724 727 724 728 775 769 953 962 791 >
ventriloid-1 56 52 54 54 54 53 > 61 54 > -
Nextcloud-487 69 4039 4039 4024 4023 4015 52 4102 4114 64 -
obdreader-22 - - - - 910 917 1119 910 912 - -
dagger-46 18 18 18 18 18 19 17 18 17 - 18
ODK-1042 73 72 72 80 73 73 81 87 76 88 78
ODK-2075 91 90 89 89 114 164 243 90 89 232 116
ODK-2086 101 125 103 101 97 99 274 138 153 287 112
ODK-2191 231 225 227 228 227 225 227 229 229 227 -
ODK-2525 47 47 47 48 48 48 47 48 48 - 47
ODK-2601 193 193 192 194 193 194 4050 193 193 - 193
k9-3255 > > > > > > > > > > 131
k9-2612 179 178 178 > > > 133 63 62 134 109
k9-2019 57 53 56 53 55 65 55 1728 3055 - -
Anki-4586 99 96 96 96 > 100 243 121 96 306 115
TagMo-12 16 13 13 13 13 13 13 14 14 13 -
FlashCards-13 68 67 68 67 67 67 67 67 69 - -
Gnu-596 18 21 23 29 30 21 19 20 17 19 18
Gnu-633 72 68 67 68 67 66 138 67 67 138 68
timeTracker-35 1974 1973 1973 1974 1974 2786 418 2788 326 418 -

“r1” = Rule 1. “N” = Crash not reproduced. “-” = Not applicable(empty extraction under the rule). “>” = Crash

not reproduced in exceeded time limit (2 hours).

title of the bug report. In contrast, ventriloid-1 cannot be reproduced by rule 7 and 10 because the
essential S2R information is not described in the title. While rule 9 takes all text involving title and
comments as input to prevent false negatives in S2R extraction, it does not always successfully
reproduce the crash. For example, SMSSync-464 spends much longer time on rule 9 than the other
rules. This is because the second comment “Google” and “play” misguides the exploration since

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:25

there are two buttons named “google voice” and “message play”. ReCDroid+ matches the two
buttons and thus wastes the exploration time.

We also evaluated our clustering algorithm in generating the rule sequence. We used a random
generation method (i.e., generated a sequence randomly) as a baseline. Specifically, we split the
42 successfully reproduced bug reports into a training set and testing set. In each iteration, we
randomly selected 32 bug reports as a training set and the other 10 bug reports as a testing set,
and then apply the clustering algorithm and the random method, respectively. The total number
of iterations is set to 1,000. The results suggest that on average, we used U-test [58] to measure
the significant difference between the average time cost of mean-shift and the random. The results
that, on average, mean-shift took 854 seconds to reproduce a crash, which was almost half of the
time taken by random (i.e., 1,594 seconds), and the difference is statistically significant.

5.3 RQ3: The Role of NLP in ReCDroid+

When compared, ReCDroid+ to ReCDroid+N and ReCDroid+D , ReCDroid+ successfully repro-
duced 35.4% and 57.7% more crashes than ReCDroid+N and ReCDroid+D .

For the crashes successfully reproduced by all three techniques, the size of event sequence gener-
ated by ReCDroid+ was 0.008% smaller than ReCDroid+N and 6.3% bigger than ReCDroid+D . Both
ReCDroid+N and ReCDroid+D generated short event sequences because like ReCDroid+, they do
not backtrack. Instead, whenever a backtrack was needed, they restarted the search from the home
screen of the app (Algorithm 1). With regards to efficiency, ReCDroid+ required 0.004% less time
than ReCDroid+N and 90.2% less than ReCDroid+D . Overall, these results indicate that the use of

NLP techniques, including both the grammar patterns and the dynamic word matching, contributed

to enhancing the effectiveness and efficiency of ReCDroid+.

We also examined the effects of false positives and false negatives reported when applying the
22 grammar patterns to each bug report, since false positives may misguide the search and false
negatives may jeopardize the search efficiency (certain useful information is missing). In the 42
crashes successfully reproduced by ReCDroid+, we found that all false positives were discarded
during the dynamic exploration because the identified false GUI components did not match with
the actual GUI components of the apps. With regards to false negatives, we found that they were all
captured by the dynamic word matching. Therefore, the false negatives and false positives of the
grammar patterns did not negatively affect the performance of ReCDroid+, although our results
may not generalize to other apps.

5.4 RQ4: Usefulness of ReCDroid+

The last column of Table 3 shows the number of participants (out of 12) that successfully repro-
duced the crashes. While all crashes were reproduced by the participants, among all 42 crashes
reproduced by ReCDroid+, 21 of them failed to be reproduced by at least one participant. For the
twelve bug reports that ReCDroid+ failed to reproduce, the success rate of human reproduction is
also low. These results suggest that ReCDroid+ is able to reproduce crashes that a small subset of de-

velopers in our study were unable to reproduce. One reason for the failures was that developers need
to manually search for the missing steps, which can be difficult due to the large number of GUI
components. As columns 2 and 9 in Table 3 indicate, in 29 bug reports, the number of described
steps is smaller than the number of events actually needed for reproducing the crashes. Another
reason was because of the misunderstanding of reproducing steps.

We also compute the time required for each participant to successfully reproduce all 54 bug
reports. The results show that the time for successful manual reproduction ranged from 3 seconds
to 1,631 seconds, with an average 170.5 seconds—63.4% less than the time required for ReCDroid+
on the successfully reproduced crashes. Such results are expected as ReCDroid+ needs to explore

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:26 Y. Zhao et al.

a number of events during the reproduction. However, ReCDroid+ is fully automated and can thus

reduce the painstaking effort of developers in reproducing crashes. Among all 42 crashes successfully
reproduced by ReCDroid+, the reproduction time required by individual participants ranged from
3 to 1,631 seconds.

It is worth noting that while it is possible the actual app developers could reproduce bugs faster
than ReCDroid+, ReCDroid+ can still be useful in many cases. First, ReCDroid+ is fully automated,
so developers can simply push a button and work on other tasks instead of waiting for the results
or manually reproducing crashes. Second, ReCDroid+ can be used with a continuous integration
server [33] to enable automated and fast feedback, such that whenever a new issue is submitted,
ReCDroid+ will automatically provide a reproducing sequence for developers. Third, users can use
ReCDroid+ to assess the quality of bug reports—a bug report may need improvement if the crash
cannot be reproduced by ReCDroid+.

The 12 participants were then asked to use ReCDroid+ and indicate their preferences for the
manual vs tool-based approach. We used the scale very useful, useful, and not useful. Our results
indicated that 7 out of 12 participants found ReCDroid+ very useful and would always prefer ReC-
Droid+ to manual reproduction, 4 participants indicated ReCDroid+ is useful, and one participant
indicated that ReCDroid+ is not useful. The participant who thought ReCDroid+ is not useful
explained that, for some simple crashes, manual reproduction is more convenient. On the other
hand, the participate agreed that ReCDroid+ is useful for handling complex apps (e.g., K-9). The 12
participants also suggested that ReCDroid+ is useful in the following cases: (1) bugs that require
many steps to reproduce, (2) bugs that require entering specific inputs to reproduce, and (3) bug
reports that contain too much information. The above results suggest that developers generally feel

ReCDroid+ is useful for reproducing crashes from bug reports and they prefer to use ReCDroid+ over

manual reproduction.

5.4.1 RQ5: Handling Low-Quality Bug Reports. Columns 4–9 of Table 5 reports the reproducibil-
ity of ReCDroid+ for the bug reports at the three different quality levels. The column success in-
dicates the number of mutated bug reports (out of 5) that were successfully reproduced at each
quality level. The column time indicates the average time (and the standard deviation) required
for reproducing the crash. The results show that among all 630 mutated bug reports for the three
quality levels, ReCDroid+ was able to reproduce 94.7%, 90%, and 80% of the bug crashes, respec-
tively. Even when 50% of the words were removed, ReCDroid+ could still successfully reproduce
27 bug reports for all 5 crashes. The slowdowns caused by the missing information with respect
to the original bug reports were only 1.6x, 1.9x, and 2.8x, respectively. These results suggest that
ReCDroid+ can be used to effectively handle low-quality bug reports with different levels of missing

information.

5.4.2 RQ6: Handling Bug Reports Generated by Different Reporters. The last two columns of
Table 5 report the reproducibility and cost (and standard deviation) of ReCDroid+ for bug reports
re-written by the four participants. In total, ReCDroid+ successfully reproduced 157 out of 168
(93.4%) bug reports, with an average time of 410 seconds—49.4% more time than reproducing the
S2R sentences from original bug reports. In eleven cases, ReCDroid+ failed to reproduce the crash
due to the following reasons: (1) incorrect input values were provided; (2) important steps were
missing; and (3) important words were misspelled. These results suggest that ReCDroid+ is robust

in handling bug reports written by different users.

6 DISCUSSION

Limitations. The current implementation in ReCDroid+ does not support item-list, swipe,
or scroll actions. In our experiment, three fail-to-be-reproduced bug reports (FastAdaptor-113,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:27

Table 5. RQ4: Different Quality Levels

#BR. Pure S2R sentences QL-10% (5) QL-20% (5) QL-50% (5) Re-write (4)
Events Time (sec) Success Time (sec) Success Time (sec) Success Time (sec) Success Time (sec)

newsblur-1053 7 158 5 196(102) 5 94(50) 5 136(88) 4 41(1)
markor-194 4 1181 5 1601(24) 4 1564(85) 4 1608(30) 3 1603(16)

birthdroid-13 5 107 5 159(128) 5 383(205) 5 659(185) 4 136(30)
car-report-43 16 310 5 280(3) 5 288(6) 5 286(1) 4 593(195)

opensudoku-173 9 576 5 770(458) 3 2267(1153) 3 2325(1636) 4 516(6)
acv-11 8 501 5 1077(1299) 5 1844(1448) 5 1911(1321) 3 1543(242)
acv-12 4 104 4 112(4) 1 121(-) 2 475(0) 2 78(1)

anymemo-18 3 67 5 90(49) 5 62(9) 5 1527(1009) 4 126(43)
anymemo-422 2 249 5 293(10) 5 296(6) 5 270(15) 4 255(15)
anymemo-440 8 934 3 1570(85) 3 1488(85) 0 >(-) 4 453(97)

notepad-23 6 216 5 333(167) 5 683(544) 5 920(671) 4 403(271)
olam-2 2 57 5 52(2) 4 50(1) 3 50(1) 4 56(8)
olam-1 2 35 5 27(1) 5 27(1) 3 27(1) 4 31(2)

FastAdapter-394 1 48 5 48(1) 5 455(374) 5 740(8) 3 243(308)
LibreNews-22 6 113 5 123(33) 5 176(77) 5 287(239) 4 253(282)
LibreNews-23 3 48 2 56(12) 2 62(4) 3 108(54) 4 63(10)
LibreNews-27 5 70 5 93(3) 5 88(1) 5 426(460) 4 74(4)
SMSSync-464 4 751 4 984(88) 4 1137(82) 3 1181(81) 4 2427(215)
transistor-63 3 41 5 52(21) 5 44(15) 5 52(20) 4 38(2)

zom-271 5 126 5 277(283) 5 202(74) 5 245(201) 4 185(64)
PixART-125 5 577 5 924(86) 5 1167(7) 5 1719(253) 3 1055(69)
PixART-127 5 138 5 435(337) 5 338(97) 5 803(536) 4 199(12)

ScreenCam-25 6 722 5 1545(943) 5 1261(42) 5 1265(37) 4 1158(30)
ventriloid-1 9 67 4 150(103) 4 108(83) 0 >(-) 4 56(1)

Nextcloud-487 2 63 5 310(461) 5 509(556) 5 1092(2) 4 2116(2467)
obdreader-22 8 892 5 1884(1717) 5 1862(1714) 3 1216(142) 3 976(153)

dagger-46 1 31 5 25(3) 5 24(1) 5 23(1) 4 29(4)
ODK-1042 2 72 4 74(1) 5 97(55) 2 77(4) 4 103(61)
ODK-2075 3 90 5 152(95) 5 164(60) 5 1015(1048) 3 135(73)
ODK-2086 3 90 4 644(757) 5 534(672) 5 812(989) 4 489(711)
ODK-2191 3 230 5 255(11) 5 266(14) 5 270(14) 3 135(73)
ODK-2525 2 81 5 687(136) 5 645(163) 5 448(257) 4 51(1)
ODK-2601 4 185 5 1186(1180) 4 1442(1109) 5 1871(2428) 4 271(132)

k9-3255 4 178 4 255(30) 3 487(463) 1 1022(-) 3 52(3)
k9-2612 2 103 5 152(20) 5 102(17) 5 1221(2550) 4 783(1466)
k9-2019 3 60 5 56(1) 5 55(0) 5 950(1214) 4 70(52)

Anki-4586 7 97 5 205(277) 5 275(324) 1 987(-) 4 116(1)
TagMo-12 2 15 5 14(0) 5 17(5) 5 14(0) 4 16(0)

FlashCards-13 3 64 5 140(11) 5 135(9) 5 137(10) 4 43(0)
Gnu-596 1 18 5 14(1) 4 14(0) 4 14(0) 4 15(2)
Gnu-633 3 84 5 81(2) 3 75(4) 1 142(-) 3 88(14)

timeTracker-35 4 1974 5 1276(797) 5 1032(845) 5 1484(698) 4 141(45)

materialistic-1067, AIMSICD-816) were due to the lack of support on these actions. We believe
that ReCDroid+ can be extended to incorporate these actions with additional engineering ef-
fort. Second, ReCDroid+ cannot handle concurrency bugs or nondeterministic bugs [30, 31]. In
our experiment, two fail-to-be-reproduced bug reports (Memento-169, Shortz-135) were due to
non-determinism and one (ODK-1796) was due to a concurrency bug. For example, to trigger the
crash in ODK-1796, it requires waiting on one screen for seconds and then clicking the next screen
at a very fast speed. For concurrency bugs, we may leverage existing work on handling concur-
rency bugs in Android apps [39, 69, 71], such as allowing specific actions to wait for a certain time
period before exploration.

Third, ReCDroid+ focuses on reproducing crashes. It does not generate automated test oracles
from bug reports, so it is not able to reproduce non-crash bugs. Nevertheless, ReCDroid+ can still be
useful in this case with certain human interventions. For example, during the automated dynamic

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:28 Y. Zhao et al.

exploration, a developer can observe if a non-crashed bug (e.g., an error message) is reproduced.
There has been some existing work [80] on generating test oracles for Android apps in certain
circumstances, but no research has considered test oracles in reproducing bug reports. We will
consider this research topic to be part of our future work. Finally, ReCDroid+ does not support
highly specialized text inputs if the input is not specified in the bug report. Recent approaches in
symbolic executions may prove useful in overcoming this limitation [40].

Threats to Validity. The primary threat to external validity for this study involves the representa-
tiveness of our apps and bug reports. However, we do reduce this threat to some extent by crawling
bug reports from open source apps to avoid introducing biases. We cannot claim that our results
can be generalized to all bug reports of all domains though. The primary threat to internal validity
involves the confounding effects of participants. We assumed that the students participating in the
study (for RQ3) were substitutes for developers. We believe the assumption is reasonable given that
all 12 participants indicated that they had experience in Android programming. Recent work [62]
has also shown that students can represent professionals in software engineering experiments. In
addition, we used four case-insensitive keywords to search for crash bug reports, which may miss
reports not containing these keywords. We can add more keywords to broaden the search, but it
may involve additional human effort to filter out non-crash bug reports.

7 RELATED WORK

Related work has focused on augmenting bug reports for Android apps [56, 57]. Specifically, FU-
SION [56] leverages dynamic analysis to obtain GUI events of Android apps, and uses these events
to help users auto-complete reproduction steps in bug reports. This approach helps end users to
produce more comprehensive reports that will ease bug reproduction. However, this technique
does not reproduce crashes from the original bug reports. We see our approach and FUSION as
complementary, if users were to utilize FUSION, this would improve the overall quality of the bug
reports and increase the success rate of our technique even further.

A tool called Yakusu [32] on translating executable test cases from bug reports presented in a
recent paper is probably most related to our approach. However, the goal of Yakusu is translating
test cases from bug reports instead of reproducing bugs (e.g., crashes) described in the bug report.
Their dynamic search algorithm stops when all GUI components extracted from bug reports are
explored regardless of whether the crash is found. Therefore, event sequences generated by Yakusu
may not reproduce all relevant crashes. Regarding efficiency, for the same eight bug reports that
ReCDroid+ can reproduce and that Yakusu can generate test cases, ReCDroid+ spent less time
in six bug reports. In total, it took ReCDroid+ 1,370 seconds to reproduce the eight bug reports,
whereas Yakusu spent 2,498 seconds translating the bug reports into test cases – 82% slower than
ReCDroid+.

In addition, Yakusu does not extract input values for editable events. Instead, it will randomly
send an input. In contrast, ReCDroid+ defines a family of grammar rules that can systematically
extract the relevant inputs from bug reports. As our study (Finding 3) shows, a non-trivial por-
tion of crashes involve specific user inputs. Moreover, Yakusu’s ontology-based approach employs
static analysis on the app source code. It matches the textual content extracted from the source
code with the bug report. In contrast, ReCDroid+ does not rely on source code but obtains the
textual content of GUI widgets at runtime. Furthermore, we conducted a more thorough empiri-
cal study to show how NLP uncovered bugs that would not be discovered otherwise. Moreover,
we conducted a user study, although light-weighted, to show usefulness of ReCDroid+. Finally in
terms of generality, the family of grammar rules derived by ReCDroid+ is from a large number
of bug reports. We also provided empirical evidence to explain the assumption and the heuristics
employed in ReCDroid+.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:29

There has been considerable work on using NLP to summarize and classify bug reports [34, 61].
For example, Rastkar et al. [61] summarize bug reports automatically so that developers can per-
form their tasks by consulting shorter summaries instead of entire bug reports. Gegick et al. [34]
use text mining to classify bug reports as either security- or non-security-related. Chaparro
et al. [26] use several techniques to detect missing information from bug reports. PerfLearner [36]
extracts execution commands and input parameters from descriptions of performance bug re-
ports and use them to generate test frames for guiding actual performance test case generation.
Zhang et al. [83] employ NLP to process bug reports and use search-based algorithm to infer
models, which can be used to generate new test cases. While these techniques apply NLP tech-
niques to analyze bug reports, they cannot synthesize GUI events from bug reports to help bug
reproduction.

There are several techniques on using NLP to facilitate dynamic analysis [41, 75]. For example,
PrefFinder [41] uses NLP and information retrieval (IR) to automatically find user preferences
for correcting the configuration of a running system. DASE [75] aims to to extract input constraints
from user manuals and uses the constraints to guide symbolic execution to avoid generating too
many invalid inputs. However, these techniques make assumptions on the format of the textual
description and none of them automatically reproduces bugs from bug reports.

To the best of our knowledge, EULER [25] and S2RMiner [84] are the only existing works that
can automatically identify S2R sentences in bug reports. Our previous work, S2RMiner [84], em-
ploys support vector machine (SVM) to extract S2R sentences from a bug report. It combines
n-grams and CountVectorizer [60] to transform text features into numerical features. However,
the size of the training dataset is less than 500 bug reports. In contrast, ReCDroid+ employs a deep
learning model designed by CNN and LSTM, which can potentially achieve better performance
than the traditional SVM.

EULER leverages neural sequence labeling in combination with discourse patterns and depen-
dency parsing to identify S2R sentences. Compared with EULER in identifying S2R and crash
sentences, ReCDroid+ has several advantages. First, ReCDroid+ employs binary classification,
whereas EULER employs multi-class classification to model the dependence among sentences. In
general, it is computationally more expensive to solve a multi-class problem than a binary problem
with the same size of data [21]. Second, EULER does not consider other characteristics of S2R sen-
tences, such as listing symbols. Third, Name leverages a set of heuristic rules to refine the results
output by the deep learning model, which can improve the accuracy of prediction.

Both EULER and S2RMiner cannot identify crash sentences, which is critical for automatically
reproduce crashes.

There are tools for automatically reproducing in-field failures from various sources, including
core dumps [73, 81], function call sequences [42], call stack [74], and runtime logs [77, 78]. However,
none of these techniques can reproduce bugs from bug descriptions written in natural language.
On the other hand, these techniques are orthogonal to ReCDroid+ and developers may decide
which technique to use based on the information available in the bug report.

There has been a great deal of work on detecting bugs or achieving high coverage for Android
applications using GUI testing [16, 20, 27, 29, 48–51, 66]. Some techniques [48, 49] utilize historical
user event logs to improve code coverage. These techniques systematically explore the GUI events
of the target app, guided by various advanced algorithms. However, none of these techniques
reproduce issues directly from bug reports.

8 CONCLUSIONS AND FUTURE WORK

Wehave presented ReCDroid+, an automated approach to reproducing crashes from bug reports
for Android applications. ReCDroid+ leverages natural language processing techniques and

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

36:30 Y. Zhao et al.

heuristics to analyze bug reports and identify GUI events that are necessary for crash reproduc-
tion. It then directs the exploration of the corresponding app toward the extracted events to
reproduce the crash. We have evaluated ReCDroid+ on 66 bug reports from 37 Android apps and
showed that it successfully reproduced 42 crashes; 12 fail-to-be-reproduced bug reports were due
to the limitations of the execution engines rather than ReCDroid+. A user study suggests that
ReCDroid+ reproduced 18 crashes not reproduced by at least one developer and was preferred
by developers over manual reproduction. Additional evaluation also indicates that ReCDroid+ is
robust in handling low-quality bug reports.

As future work we intend to leverage the user reviews from App store to extract additional
information for helping bug reproduction. We also intend to develop techniques to automatically
extract grammar patterns from bug reports.

REFERENCES

[1] 2013. acv-11. https://github.com/robotmedia/droid-comic-viewer/issues/11.

[2] 2014. lxml.etree. https://lxml.de/tutorial.html.

[3] 2015. Mark message as unread make app crash. https://github.com/moezbhatti/qksms/issues/241.

[4] 2016. Google Code. https://code.google.com.

[5] 2016. Google Code Archive. https://code.google.com/archive/.

[6] 2018. UI Automator. https://github.com/xiaocong/uiautomator.

[7] 2018. Word2vec. https://github.com/dav/word2vec.

[8] 2019. ReCDroid. https://github.com/AndroidTestBugReport/ReCDroid.

[9] 2019. UI/Application Exerciser Monkey. https://developer.android.com/studio/test/monkey.html.

[10] 2020. 22 patterns. https://github.com/AndroidTestBugReport/ReCDroid/blob/master/nlp%20pattern/grammar%

20patterns.xlsx.

[11] 2020. APPLAUSE. https://www.applause.com/blog/app-abandonment-bug-testing.

[12] 2020. GitHub. https://github.com.

[13] 2020. Google Play Data. https://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-play-store.

[14] 2020. maxPool. https://keras.io/api/layers/pooling_layers/.

[15] Charu C. Aggarwal and ChengXiang Zhai. 2012. A survey of text classification algorithms. In Mining Text Data.

Springer, 163–222.

[16] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M. Memon. 2012.

Using GUI ripping for automated testing of Android applications. In Proceedings of the International Conference on

Automated Software Engineering. 258–261.

[17] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M. Memon. 2015. Mobi-

GUITAR: Automated model-based testing of mobile apps. IEEE Software 32, 5 (2015), 53–59.

[18] Vincenzo Ambriola and Vincenzo Gervasi. 1997. Processing natural language requirements. In Proceedings of the

International Conference Automated Software Engineering. 36–46.

[19] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and Vipindeep Vangala. 2009. DebugAd-

visor: A recommender system for debugging. In Proceedings of the Joint Meeting of the European Software Engineering

Conference and the Foundations of Software Engineering. 373–382.

[20] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of Android apps.

In ACM SIGPLAN Notices, Vol. 48. 641–660.

[21] Younes Bennani and Khalid Benabdeslem. 2006. Dendogram-based SVM for multi-class classification. Journal of

Computing and Information Technology 14, 4 (2006), 283–289.

[22] Robert L. Brennan and Dale J. Prediger. 1981. Coefficient kappa: Some uses, misuses, and alternatives. Educational

and Psychological Measurement 41, 3 (1981), 687–699.

[23] Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. 1992. Class-based

n-gram models of natural language. Computational Linguistics 18, 4 (1992), 467–479.

[24] Bugzilla 2016. Bugzilla keyword descriptions. https://bugzilla.mozilla.org/describekeywords.cgi.

[25] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus, Massimiliano Di Penta, Denys

Poshyvanyk, and Vincent Ng. 2019. Assessing the quality of the steps to reproduce in bug reports. In Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 86–96.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

https://github.com/robotmedia/droid-comic-viewer/issues/11
https://lxml.de/tutorial.html
https://github.com/moezbhatti/qksms/issues/241
https://code.google.com
https://code.google.com/archive/
https://github.com/xiaocong/uiautomator
https://github.com/dav/word2vec
https://github.com/AndroidTestBugReport/ReCDroid
https://developer.android.com/studio/test/monkey.html
https://github.com/AndroidTestBugReport/ReCDroid/blob/master/nlp%20pattern/grammar%20patterns.xlsx
https://www.applause.com/blog/app-abandonment-bug-testing
https://github.com
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://keras.io/api/layers/pooling_layers/
https://bugzilla.mozilla.org/describekeywords.cgi

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:31

[26] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta, Andrian Marcus, Gabriele Bavota,

and Vincent Ng. 2017. Detecting missing information in bug descriptions. In Proceedings of the Joint Meeting on

Foundations of Software Engineering. 396–407.

[27] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua Xu. 2019. Storydroid: Automated

generation of storyboard for Android apps. In Proceedings of the IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 596–607.

[28] Jason P. C. Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional LSTM-CNNs. Transactions of

the Association for Computational Linguistics 4 (2016), 357–370.

[29] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of Android apps with minimal restart and

approximate learning. In ACM SIGPLAN Notices, Vol. 48. ACM, 623–640.

[30] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and Geguang Pu. 2018. Efficiently manifesting

asynchronous programming errors in Android apps. In Proceedings of the International Conference on Automated

Software Engineering. 486–497.

[31] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong Su. 2018. Large-

scale analysis of framework-specific exceptions in Android apps. In Proceedings of the International Conference on

Software Engineering. 408–419.

[32] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018. Automatically translating bug re-

ports into test cases for mobile apps. In Proceedings of the SIGSOFT International Symposium on Software Testing and

Analysis. 141–152.

[33] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-Works. http://www.thoughtworks.

com/ContinuousIntegration.pdf 122 (2006), 14.

[34] M. Gegick, P. Rotella, and T. Xie. 2010. Identifying security bug reports via text mining: An industrial case study. In

Proceedings of the International Working Conference on Mining Software Repositories. 11–20.

[35] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget: Continual prediction with LSTM.

[36] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from bug reports to understand and generate

performance test frames. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering

(ASE). 17–28.

[37] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan. 2014. PUMA: Programmable UI-

automation for large-scale dynamic analysis of mobile apps. In Proceedings of the International Conference on Mobile

Systems, Applications, and Services. 204–217.

[38] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with bloom embeddings, con-

volutional neural networks and incremental parsing. To Appear.

[39] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L. Pereira, Gilles A. Pokam, Peter M. Chen,

and Jason Flinn. 2014. Race detection for event-driven mobile applications. ACM SIGPLAN Notices 49, 6 (2014), 326–

336.

[40] Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster. 2012. SymDroid: Symbolic Execution for Dalvik Bytecode.

Technical Report.

[41] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson. 2014. PrefFinder: Getting the right preference in config-

urable software systems. In Proceedings of the International Conference on Automated Software Engineering. 151–162.

[42] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing field failures for in-house debugging. In Proceedings of

the International Conference on Software Engineering. 474–484.

[43] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classifi-

cation. arXiv preprint arXiv:1607.01759 (2016).

[44] Anne Kao and Steve R. Poteet. 2007. Natural Language Processing and Text Mining. Springer Science & Business

Media.

[45] KBP 2012. Knowledge Base Population. https://nlp.stanford.edu/projects/kbp/.

[46] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014).

[47] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word

embeddings. Transactions of the Association for Computational Linguistics 3 (2015), 211–225.

[48] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. A deep learning based approach to automated Android

app testing. arXiv E-prints (2019), arXiv–1901.

[49] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshyvanyk. 2015. Min-

ing Android app usages for generating actionable GUI-based execution scenarios. In 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories. IEEE, 111–122.

[50] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for Android apps.

In Proceedings of the Joint Meeting on Foundations of Software Engineering. 224–234.

[51] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented evolutionary testing of Android

apps. In Proceedings of the SIGSOFT International Symposium on Foundations of Software Engineering. 599–609.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

http://www.thoughtworks.com/Continuous Integration.pdf
https://nlp.stanford.edu/projects/kbp/

36:32 Y. Zhao et al.

[52] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In

Proceedings of the International Symposium on Software Testing and Analysis. 94–105.

[53] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman. 2016. A survey of app store analysis

for software engineering. IEEE Transactions on Software Engineering 43, 9 (2016), 817–847.

[54] Andrew McCallum, Kamal Nigam, et al. 1998. A comparison of event models for Naive Bayes text classification. In

AAAI-98 Workshop on Learning for Text Categorization, Vol. 752. Citeseer, 41–48.

[55] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry

Heck, Gokhan Tur, Dong Yu, et al. 2015. Using recurrent neural networks for slot filling in spoken language under-

standing. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 3 (2015), 530–539.

[56] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2015. Auto-completing

bug reports for Android applications. In Proceedings of the Joint Meeting on Foundations of Software Engineering.

673–686.

[57] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. 2016.

Automatically discovering, reporting and reproducing Android application crashes. In Proceedings of the IEEE Inter-

national Conference on Software Testing, Verification and Validation. 33–44.

[58] Nadim Nachar et al. 2008. The Mann-Whitney U: A test for assessing whether two independent samples come from

the same distribution. Tutorials in Quantitative Methods for Psychology 4, 1 (2008), 13–20.

[59] Frank Padberg, Philip Pfaffe, and Martin Blersch. 2013. On mining concurrency defect-related reports from bug

repositories. 10.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[61] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2014. Automatic summarization of bug reports. IEEE Transactions

on Software Engineering 40, 4 (2014), 366–380.

[62] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students representatives of professionals in software

engineering experiments?. In Proceedings of the International Conference on Software Engineering-Volume 1. 666–676.

[63] Shai Shalev-Shwartz and Tong Zhang. 2013. Stochastic dual coordinate ascent methods for regularized loss mini-

mization. Journal of Machine Learning Research 14, Feb (2013), 567–599.

[64] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A

simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014),

1929–1958.

[65] Ting Su. 2016. FSMdroid: Guided GUI testing of Android apps. In Proceedings of the International Conference on

Software Engineering Companion. 689–691.

[66] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017.

Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the Joint Meeting on Foundations of

Software Engineering. 245–256.

[67] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. 2011. Towards more accurate retrieval of duplicate bug

reports. In Proceedings of the International Conference on Automated Software Engineering. 253–262.

[68] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. iComment: Bugs or bad comments? In ACM SIGOPS

Operating Systems Review, Vol. 41. 145–158.

[69] Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. 2016. Generating test cases to expose concurrency bugs in

Android applications. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineer-

ing. 648–653.

[70] Jos Van Der Westhuizen and Joan Lasenby. 2018. The unreasonable effectiveness of the forget gate. arXiv preprint

arXiv:1804.04849.

[71] Jue Wang, Yanyan Jiang, Chang Xu, Qiwei Li, Tianxiao Gu, Jun Ma, Xiaoxing Ma, and Jian Lu. 2018. AATT+: Effec-

tively manifesting concurrency bugs in Android apps. Science of Computer Programming 163 (2018), 1–18.

[72] Xuerui Wang, Andrew McCallum, and Xing Wei. 2007. Topical n-grams: Phrase and topic discovery, with an appli-

cation to information retrieval. In Proceedings of the International Conference on Data Mining. 697–702.

[73] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. 2010. Analyzing multicore dumps to facilitate con-

currency bug reproduction. In ACM SIGPLAN Notices, Vol. 45. 155–166.

[74] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2015. Gener-

ating reproducible and replayable bug reports from Android application crashes. In Proceedings of the International

Conference on Program Comprehension. 48–59.

[75] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. 2015. DASE: Document-assisted symbolic execution

for improving automated software testing. In Proceedings of the International Conference on Software Engineering.

620–631.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports 36:33

[76] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A grey-box approach for automated GUI-model generation of mobile

applications. In International Conference on Fundamental Approaches to Software Engineering. 250–265.

[77] Tingting Yu, Tarannum S. Zaman, and Chao Wang. 2017. DESCRY: Reproducing system-level concurrency failures.

In Proceedings of the Joint Meeting on Foundations of Software Engineering. 694–704.

[78] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging practices in open-source software. In

Proceedings of the International Conference on Software Engineering. 102–112.

[79] Hrushikesh Zadgaonkar. 2013. Robotium Automated Testing for Android. Packt Publishing Ltd.

[80] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated generation of oracles for testing

user-interaction features of mobile apps. In Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh

International Conference on. 183–192.

[81] Cristian Zamfir and George Candea. 2010. Execution synthesis: A technique for automated software debugging. In

Proceedings of the European Conference on Computer Systems. 321–334.

[82] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In

Advances in Neural Information Processing Systems. 649–657.

[83] Yuanyuan Zhang, Mark Harman, Yue Jia, and Federica Sarro. 2015. Inferring test models from Kate’s bug reports

using multi-objective search. In Proceedings of the International Symposium on Search Based Software Engineering.

301–307.

[84] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Automatically extracting bug reproducing steps

from Android bug reports. In International Conference on Software and Systems Reuse. Springer, 100–111.

[85] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. 2015. A C-LSTM neural network for text classification.

arXiv preprint arXiv:1511.08630.

Received September 2020; revised September 2021; accepted September 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 36. Pub. date: March 2022.

